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Abstract

In this thesis, we investigate the periodic character, invariant intervals,oscillation and

global stability of all positive solutions of the equation :

a+ ﬁxn + VYTn—k
Bz, + Cx,_s

Tpy1 =

where the parameters, a, 3, v, B, and C and the initial conditions are nonnegative.
We give a detailed description of the semicyles of solutions, and determine conditions
that the equilibrium points are globally asymptotically stable.

In particular, our monograph is a generalization to the rational difference equation

that was investigated in [6].
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Introduction

Difference equations are relatively new discipline within the fields of science and
engineering. Difference equations appear in the literature under variety of names.
There are large number of applications on dynamical systems and difference equations.
These applications include mathematical, physical, biological, economical, and social
science. Rational difference equations lack of complete theory, and the study of such
equations is quite challenging and still at its infancy.

Rational difference equations are of great importance in their own right. And fur-
thermore that results about such equation offer prototypes towards the development
of the basic theory of the global behavior of solutions of nonlinear difference equations
of order greater than one. The techniques and results about these equations are also
useful in analyzing the equations in the mathematical models of various biological
systems and other applications.

The Dynamical characteristics and qualitative behavior of positive solutions of
some higher order nonlinear difference equations have been investigated by many

authors.



Dehgan and Douraki [3] investigated the global stability, invariant intervals, semi-

cycles, and the boundness of the equation:

an:M’ n=20,1,2,--- (0.1)
xn—i_qxnfk

where the parameters p and ¢ are nonnegative and the initial conditions z_g, ..., xq
are positive real numbers, k = {1,2,3,--- }.
Li and Sun in [16] investigated the periodic character, invariant intervals, oscilla-

tion, and global stability of all positive solutions of the equation

Ly + Ly
Gy = PEn T nk g1 9, (0.2)
q + Ty
where the parameters p and ¢ and the initial conditions x_;,z_g.1,---, T_1, xo are

nonnegative real numbers, k = {1,2,3,--- }.

M. Saleh and M. Alogeili in [15] investigated the equation

Y1 = A+ 0 =0,1,2,... (0.3)
Yn—k

M. Saleh and M. Alogeili in [14] and H.M. El-Owaidy, A.M. Ahmed, and M.S.
Mousa [9] investigated the global asymptotic stability, periodicity and semi-cycle

analysis of the unique positive equilibrium point of the equation

Ynt1 =A+M,n:0,1,2,... (0.4)

n

DeVault in [5] investigated the global stability and periodic character of solutions

of the equation

+ X
xm:u’ n=0,1, 2, (0.5)
qTy +In—k



where the parameters p and ¢ and the initial conditions z_p,x_ ki1, -+ ,x_1, 2 are
nonnegative real numbers, k = {1,2,3,--- }.
M.J. Douraki, M. Dehghan, and M. Razzaghi in [10] and [4] investigated the

qualitative behavior of the equations

p+q$n—k
=——n=0,1,2,.. 0.6
Tn+1 1+$n , I 5 Ly 4y ( )
and
D+ qYn
tpiy = LTI~ 01,2, .., 0.7
+1 1+ vk (0.7)

S. Abu Bahaa in [1] has investigated the local and global stability, invariant

intervals, semicycles, periodic character of solutions of the difference equation

BTn, + YT
Tpi1=———"—-—7097—, n=01,2,--- 0.8
+ Bz, + Cx, (0.8)
where the parameters 3, v, B, and C and the initial conditions x_j, x_ 41, -+, T_1, Tg
are nonnegative real numbers, k = {1,2,3,---}.

a+BTn+VTn—k

e rem— theoritically, it is a good idea to study

To analyze equation x,,; =

the difference equation

" :@+5$n—1+7$n—1 n=0.1.92...
n+1 B$n+0$n_1 ) 3 Ly Ay

where the parameters «, (3, v, B, and C are nonnegative real numbers and the initial

conditions x_j1, xy are arbitrary positive real numbers.



The goal of our research on rational difference equations is to determine the char-

acter of solutions of equation

o+ ﬂwn + VYn—k
Tpil = ,n=20,1,2,...
1 Bx, + Cx,_}

for all nonnegative parametersa, 3, v, B and C and nonnegative initial conditions
T_ g, T_g+1, ---, To- We are particularly interested in the asymptotic behavior of
solutions, that is, the behavior of the solution as n — oco. We will determine the
conditions for stability and give detailed description for Invariant interval, Existence
of two-period solution, and Semicyle analysis.

Chapter 1 is an introduction to Difference equations. It includes linear and nonlin-
ear first order difference equation or one dimensional maps on the real line, kth order
Difference equations, and Equilibrium point concept. we give solution methods for
linear difference equations of any order, and complete analysis of stability for many
famous equations such as Linear Difference equations and Logistic Map. It includes
Cobweb diagram, an effective graphical iteration methods to determine the stability
of fixed points.

Chapter 2 introduces Rational Difference Equation, and some definitions and the-
orems that will be used next.

In Chapter 3 we investigate the rational difference equation

T :a+ﬁxn+7xn_kn:01
n+1 an+cxn_k , , 4.




We do change of variable to reduce number of parameters. Then we find the equilib-
rium point, and determine the conditions for stability. We give a detailed description
of invariant intervals. Then we determine the conditions to Existence of two-cycles
and semicycles. It is important to mention that chapter 3 has been done indepen-
dently with Aseel Farhat.

In Chapter 4 we examine the character of solution of

. :a+5$n+7$n—kn:01
e Bx, +Cxp_p T

when one or more of the parameters are zero.

Finally, Chapter 5 presents numerical solutions obtained by using computer which
is very good. We use a powerful Matlab and create mfiles to get plots and numerical
solutions of equations. We also create Phase Space Diagram which is one of the best
graphical methods to illustrate the various notions of stability. We compare between
theoretical approach and computational approach, this is an important part of my

thesis.



Chapter 1

Preliminary and Basic Theory Of
Difference Equation

1.1 Introduction

The theory of dynamical systems is a major mathematical discipline closely inter-
twined with most of the main areas of mathematics. Its mathematical core is the
study of the global orbit structure of maps and flows with emphasis on properties
invariant under coordinate changes. Its concepts, methods, and paradigms greatly
stimulate research in many sciences and have given rise to the vast new area of ap-
plied dynamics (also called nonlinear science or chaos theory). Although the field
of dynamical systems comprises several major disciplines, we are interested mainly
in dynamics of difference equations. The theory of dynamical systems is insepara-
ble connected with several other areas, primarily difference equations and differential
equations.

The dynamic of any situation refers to how the situation changes over the course



of time. A dynamical system is a physical setting with rules for how the setting
changes or evolves from one moment of time to the next, i.e. a dynamical system is
a system that changes over time. [1]. Dynamical system is contrast to static system
which does not change over time.

When we model a system, we usually idealize the system in term of its state
variable of the system, which are quantities that represent the system itself. For
example, moving body may be represented by state variable of velocity and position
over time. Model of population dynamic, the system state variable me be the number
of population that born, migrate, and dead and the existing population.

In other words, dynamical systems is the study of phenomena that evolve in space
and / or time by looking at the dynamic behavior or the geometrical and topological
properties of the solution. Whether a particular system comes from Economics, Biol-
ogy, Physics, Chemistry, or even Social sciences, the dynamical systems is the subject
that provides the mathematical tools for its analysis.

Now, we introduce the Dynamical system in point of view of mathematics. A
dynamical system is a system whose behavior at given time depends, in some sense, on
its behavior at one or more previous times.the words "in some sense” in the preceding
sentence should be taken to mean that we may or may not have a clue as to how
current state of a system depends on a past state; but we have reason to believe that

1t does. Furthermore, it is the task of the mathematical modeler to come up with a



mathematical construct, a model that will describe this relationship between current
and past states of the system so that predictions about the future course of events

for the system may be made with some degree of accuracy. [1].
1.2 Difference Equations

Dynamical systems has appeared in mathematics and engineering in many different
forms and names regardless that they lead to same discipline. Our particular system
is the system whose state depends on input history. In discrete time system, we
call such system is difference equation which is equivalent to differential equation in
continuous time. In this section we will talk about difference equation: definition,
solution, difference equations in literature, and disciplines. While the behavior of
solution of difference equation is left and we will discuss in chapter two. Difference
equation is an equation involving differences. In this research We will investigate
difference equation from two points of view: as sequence of numbers, and iterated
function. they are equivalent, but we look at them in different points of view and for

different purposes.

1. A difference equation is a sequence of numbers that is generated recursively
using a rule to relate each number in the sequence to previous numbers in the

sequence. [1]

Example 1.1. (Fibonacci sequence)



The sequence {1,1,2,3,5,8,13,21,54,...} is called Fibonacci sequence, which
15 generated by the formula

Thio = Tyl + Tk

where xo =21 =1and k=0,1,2,---.

2. Difference equation as an iterated map : Consider a map f : R — R where R
is the set of real numbers. Then the (positive) Orbit O(xg) of a point zy € R

is defined to be the set of points
O(z0) = {zo, f(70), f2($0), f3($0)> e}

where f2 = fo f, f3= fofof etc. and fo f(xo) = f(f(x0))

Example 1.2. (The Logistic Map) The following mathematical model may be
of the form
Unt1 = 1 Yo — b Ys (1.1)

where y, be the size of a population of a certain species at time n, p is the rate
of growth of the population from one generation to another, and b s the pro-
portionality constant of interaction among numbers of the species. To simplify
FEquation( 1.1), we let x,, = % Yn. Hence,

Tpa1 = pxn, (1 —x,) (1.2)
FEquation(1.2) is called the logistic equation and the map f(z) = px(l — x) is

called logistic map. by varying the value of u, this equation exhibits somewhat
complicated dynamics.

In the remaining of this chapter we will discuss the methodology of solving Dif-

ference equations and investigate their solution as n — oo.
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1.3 Solution of Linear first order Difference Equa-
tions

Definition 1.1. Consider a map f : ® — R. Let x, = f"(zo) where 2o € . The
following equation

Tt = [f(2n) (1.3)

is called first order difference equation with initial value x.

Definition 1.2. A solution of difference equation is the set of numbers that makes
the difference equation true for all values. In other words, by a solution of Eq.(1.3),
we mean a sequence {z,}, n=0,1,2,..., with x,,.; = f(z,) and given x, i.e., a sequence
that satisfies the equation.

The nature of difference equations allows the solution to be calculated recursively.
So it is easier and better to see the solution of the difference equation through algebraic
formula. In this case the difference equation is called closed form.

The simplest maps to deal with are the linear maps and the simplest difference
equations to solve are linear ones. Despite Linear equations play an important role in
mathematics because are being used to illustrate many situations since their solutions
are simple to achieve. Many cases in natural and social science are modeled by linear
equations. We can find out the solution of linear first order difference equation by
forward iteration with initial condition xy. Let us consider the following difference
equation

Tpy1 = ATp

with initial condition xy. Observe that the equilibrium point T = 0. We get the

solution by forward iteration with initial condition, x
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1 = ATy
Ty = ax; = alary) = a*wg

T3 = ATy = CZB.%'()

T, = a"To

We can make the following results about the limiting behavior of the solution of

equation T, 1 = aTy:
1. If |a] < 1, then lim,, o 2, =0
2. If |a] > 1, then lim,, . x, = 00

3. If a =1, then every point is an equilibrium point.

ro if niseven
4. If a = -1, then z,, =
—x9 tf misodd

or x, = (—1)"xg
Example 1.3. Assume we have the following difference equation
Tpi1 = aT, + 0
with initial value xo and we have to solve this equation. There are three cases :

1. a # 1 Observe that the equilibrium point
b

1—a

T =
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The solution of difference equation can be calculated recursively
Ty =axyg+b
Ty = ar; + b= a(azg+b) + b= a’xo +ab+b
T3 = ars + b= a(a’zo+ ab+b) + b = a’xo+ a’b+ab+b
1y = axs = a(a’zy + a*b+ab+b) +b=a'vy+a*b+a’*b+ab+ b

Ty =a"xo+a" " 'b+a" b+ +ab+b
T, =a"zo+ba +a" P dat 1)

1—a™
1
1_@)417é

Ty = a" o + b(

b b
Ja" +

n = (20 + — o 47 (1.4)

Using the formula of Eq.( 1.4), the following conclusions can be easily verified:

b

l—a:x

(a) If |a] < 1, then lim, oz, =

(b) Ifla| > 1, then lim,_.o x, = %00, depending on weather o+ is positive
or negative, respectively.

2. If a =1, then x,, = xo + nb and lim,,_,o, x,, = F00

0; if niseven

3. Ifa =—1, then x,, = (—1) xo—i-{ b if nis odd

1.4 Solutions of Difference Equations of Higher
Order

The normal form of k£"order nonhomogeneous linear difference equation is given by:

Ttk + D1(N)Tpik—1 + D2(N)Tpgr—2 + - - - + pr(n)x, = g(n) (1.5)

where p;(n) and g(n) are real valued functions defined for n > ng and pg(n) # 0. If

g(n) =0, then the Eq.( 1.5) is said to be a homogeneous equation. Now the equation:

Tptk + P1Tptk—1 + P2Tpyk—2 + -+ P2y, =0 (1.6)
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is called linear difference equation of k**order with constant coefficients. To the end
of this section we will give all possible solutions of Eq.( 1.6), and the solutions of

Eq.( 1.5) have been investigated in 7]

1.4.1 Solutions of k' order homogeneous linear difference
with constant coefficients

Now, consider the k* order homogeneous linear difference equation ( 1.6) where the
pi’s are constant and pg # 0. Define A to be the characteristic root of Eq.( 1.6), then

A" is a solution of Eq.( 1.6). Substitute A" into Eq.( 1.6), we obtain:

which is called the characteristic equation of Eq.( 1.6).

The general solution of Eq.( 1.6) has different forms depending on A°.

1. Distinct roots

Suppose that the characteristic roots Ay, A9, - -+, Ay are distinct. i.e.

[Ad] # [Xof # - # [A]
So the general solution is:

Tp = Cl)\? + C2>\72I + -+ Ck)\z
Example 1.4. Find the solution of the following difference equation
Tpyo + 20401 —8xp, =0,20 =2,21 =3

Solution:



The characteristic equation of the above difference equation is:

A 4+220-8=0

14

The characteristic roots are: A\; = 2, Ay = —4, The general solution is given by

Ty = c1(2)" + co(—4)"
To=2=c+c

131:3:201—402

Thus ¢; = % and cy = %. Consequently, the general solution is:

. Repeated Roots

)\1:)\2:"':)\m:)\: 2§m§k

so the general solution of difference equation( 1.6) is given by:

T = A"+ onA + -+ epn™ I 4+ Cn1 Ay T+ Ay
Example 1.5. Find the solution of the following difference equation
Tpyo + 6241 +92, =0,20 =1,20 =0

Solution:



The characteristic equation of the above difference equation is:

AN 4+6A+9=0

so A1 = Ay = —3,The general solution is given by

Ty = c1(=3)" + con(—=3)"
o = 1= C1

I =0= —3C1 —3C2

Thus, ¢ = —1 and, consequently,

T = (=3)" = n(=3)"

= (-3"(1-n)
3. The absolute value of the roots are equal

1.e.

Al = [Ao] = - = A

e The characteristic roots are equal

the general solution is:

Tp = N+ on A" 4 -+ £ cpnfTIN

= (c1 + con+ -+ n T HA"

15



e The characteristic roots are not equal

and

At = Ampa = -+ = A = =

The general solution is given by:

Ty, = (1 + con + csn? 4+ Cmnmfl))\” +

(Cmg1 + Cogal + Cpgn® + - + M) (=1)" A"

Example 1.6. Find the solution of the following difference equation
Tpyo —4x, =0

Solution: The characteristic equation is

So the general solution is given by:

Ty = 12" + co(=2)"
— 2"+ oo (—1)"2"
=(c1 + (—=1)"¢y)2"

4. Some of roots are complex
Assume that

)\1:OJ+’iﬁ

16
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and

)\2:(){—2'5

and that A3, Ay, -+, \; are all real and distinct such that

[As| > [Aa] > - > A

where
/\1 =a+ ’Lﬁ
= re
=r(cos ¢+ i sin )
and

)\gzoz—zﬂ
i

=re

=r(cos ¢ —1i sin @)
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Then the general solution of Eq.(1.6) is given by:

T, = cyr"e™® 4 core” P 4+ c3A\s + -+ ey
= 17" (cos ng + i sin ng) + cor’(cos ng — i sin ne) + czA\y + - + RN}
= (¢1 + c2)r" cos ng + (¢ — c)r™i sin ng + 3Ny + -+ + AL
=1"[(c1 + c2) cos ng + (c1 — c2)i sin n@| + czA\y + -+ - + cEAL

= r"[a; cos nd + ay sin n@| + cgAy + - - + A}

where a; = ¢; + ¢ and ag = (¢; — ¢2)i. Now, Let

@ i a2 , W= arctan(%)

2 2 2 2
Vajy +aj Va1 + a3 ay

The solution will be

T, =1"\/a} + a3lcos w cos ng +sin w sin nel 4+ c3Ay + - -+ A}

=r"\/at + a3 cos (nd — w) + 3\ + -+ + A}

= Ar"cos (ng —w) +cg\y + - - + Ay

where

A=/a?+ a3
Va2 + 3

r=\a?®+ [?

%)

¢ = arctan(
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Example 1.7. Solve the difference equation
Tpts — 4Tpi0 + 6241 — 42, =0

Solution:

The characteristic equation is
N =4 +6A—4=0
A=2)(M*—=2X2+2)=0

The characteristic roots are: A =2, A =141, and A\ = 1 — 7. Therefore, the general
solution is

T = 12" + A(V2)" cos(n% —w)

1.4.2 Solutions of k" order nonhomogeneous linear difference
with constant coefficients

The main idea of solving such difference equations is to find particular solution in
addition to homogeneous solution, and there are some techniques discussed in this

manner in [7].
Example 1.8. Find the general solution of

2
Tpio — 3Tper + 2x, =4" —n

Solution:

Let xg, z1be two initial conditions. Then

Ty = Thy + Lpn
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where x,, is the general solution.
ZThn is the homogeneous solution.
Zpn is the particular solution.

To find the homogeneous solution: solve the characteristic equation:
P =3r+2=0

P —3r+2=>r-1r-2=0

= 1, 9 = 2
Then, the homogeneous solution is:

Thn = ary] + bry

=a+ b2"

To find particular solution, let x,, = c4™ + dn? + en + f

substituting this potential solution into the equation and equating coefficients as
following

Tpn = A"+ dn® +en+ f

Tpni1 = A" £ d(n+1)° +e(n+1)+ f

Tpmio = A2+ d(n+2)7+e(n+2)+ f

Hence, we get

A" d(n+2)2+e(n+2)+ f=3(cA"  +d(n+1)*+e(n+1)+ f)+2c4™ +dn*+en+ f = 4"—n?
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after doing simple algebraic calculations, we get

6cd™ —2dn+d — e = 4™ — n?

:6021:02%
= -2d=0=d=0
=>d—e=0=e=0

Thus, the general solution of the equation is:

1

To find the values of constants a and b the initial conditions xg, x1 must be

provided.

1.5 Solution of Nonlinear Difference Equations

In fact, most of Difference Equations arise from real applications are nonlinear. And
most nonlinear difference equations cannot be solved explicitly. However, some of the
nonlinear difference equations can be transformed into linear difference equations by
change of variable techniques [7].

In this section we introduce a few types of linear transformation techniques.
Type 1. Equations of Riccati type

Tpi1Zn + p(n)Tpi1 + q(n)x, =0 (1.8)
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The change of variable z, = i transform the Riccati equation (1.8) to the

linear difference equation
q(n)zni1 +p(n)z, +1=0 (1.9)

The nonhomogeneous equation of Riccati type

requires a different transformation. Let vy, = % — p(n) and substitute it in
Eq.(1.10) to get
zZps2 + ((n) — p(n + 1) zp41 — (9(n) + p(n)q(n))z, =0 (1.11)

Example 1.9. Solve the difference equation
Tpt1Tp — Tl T Tp = 0

Solution:

The equation is Riccati type and we can solve it By letting z,, = i This
gives us the equation

Znt1 = 2p — 1

which is first order linear difference equation whose solution is given by
Zn=C—mn

therefore,
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Type 2. Equations of general Riccati type:

a(n)x, + b(n)

= 1.12
ot c(n)x, +d(n) (1.12)
such that ¢(n) # 0, a(n)d(n) — b(n)c(n) # 0 for all n > 0.
Let
c(n)x, +d(n) = Ynil
Yn
then
- Yn+1 d(n)
Ty = - ——
c(n)yn  c(n
Substitute it in (1.12) to obtain
yure  d(nt1) _a(n) + [ — S8+ b(n)
cn+Dyp1 c(n+1) o
By simplifying the above equation, we get
Ynt2 + P1(1)Ynt1 + p2(n)yn = 0, (1.13)

Where
c(n)d(n+1)+a(n)e(n+1
pl(n):_()( ) +a(n)c(n +1)
c(n)
c(n+1
paln) = (alm)dm) ~ b)) .
Example 1.10. Solve the difference equation
. _ 2x,+3
nl T 3%, + 2

Solution:



Here a =2, b= 3, c = 3, and d = 2. Hence ad — bc # 0. By using the

transformation

Yn+1
Yn

3r, +2=
we obtain the following homogeneous linear difference equation
Ynt2 = 4Ynt1 —0Yn =0, o =1, y1 =320 + 2
And its characteristic equation is
N —4X—5=0

hence, the characteristic roots Ay =5, Ay = —1.

Hence

Yn = C15n + 02(_1)n.
By using formula (1.14), we have

_ 1yn+1 2
"3y, 3
L5 4 e
T3 e+ o
o5 = (1"
b+ ep(—1)m
5t —c(-1)"
arEn

Tn

_1)n+1

3

where ¢ = &.
c2

24

(1.14)
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Type 3. Homogeneous difference equation of the type

F(EH ) =0 (1.15)

n

Use the transformation z,, = % to convert such an equation to a linear in z,,
n

which is can be solved easily.

Example 1.11. Solve the following difference equation

T2y — 3Tpy1 Ty + 2275 =0 (1.16)

Solution: By dividing over x2, the equation (1.16) will be

Tn+tly9 Tn+41
-3 2=0
(T =3

By letting

we get the following equation
22 =32, +2=0
and the last equation can be broken by factorizing to
(zn —2)(z, — 1) =0

Thus, either
Zn =2

or
Zn =1

Hence, we get the following solution:

Tpy1 = 2z,
or

Tp4+1 = Tp
consequently

T, = 2"z
or

ITn — 2o
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Type 4. Consider the difference equation of the form

(@) ) (2 sn-1)") - ((20)™41) = g(n) (1.17)

The change of variable z, = Inz(n) transform Eq.(1.17) to

T1Znak + ToZnik-1 + o + Thr12, = Ing(n) (1.18)

Example 1.12. Solve the difference equation

2

In—&—l
Tura = 3 (1.19)

Solution:

Let z, = Inx,, then substitute in z, = e¢* Eq.(1.19) we obtain
Znt2 — 22p41 + 22, =0
which is second order linear difference equation and its characteristic equation
is
N =2\ +2=0
The characteristic roots are Ay = 1414, Ay =1 — 1. Thus

nim nm

zn = (V2)"[ey COS(Z) + ¢ sin(z)].

Therefore,

Ty = exp[(\@)n{cl COS(%) + G2 Sin(%)}]
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1.6 Behavior of Solutions of Difference Equations

In this section we will try to determine the behavior of solution of difference equations
in view of theoretical and computational approach. Moreover the difference equations
have a complete theory in one dimension, so we will list all definitions and theorems
with illustration examples. These examples have been chosen to help the reader to
understand the notions and terminologies that have been used in next chapters. For
this purpose we concentrate our investigation to the first order difference equations.
As we mentioned we are particularly interested in the asymptotic behavior of solu-
tions, that is, the behavior of the solution as n — oco. However, our research only
looks at simple models, which can be easily solved analytically. This approach has
two advantages: first, most of us are familiar with these models and can obtain their
analytical or exact solutions in addition to numerical solutions for these models which
can be obtained using Matlab and Maple. Second, the comparison between analyt-
ical and numerical results help us understand the power and the limits of numerical
solutions.

Consider a map f : # — R where R is the set of real numbers. Then the (

positive) orbit O(z) of point zy € R is defined to be the set of points

O(z0) = {0, f(70), fz(l“o)a f3($0)> e}
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1.6.1 Equilibrium Points of Difference Equations

Let us consider the difference equation

Tas1 = flwn) (1.20)

Definition 1.3. [8] A point 7 is said to be a fixed point of the map f or an
equilibrium point of the Eq. (1.20) if f(7) = 7.

Example 1.13. Determine the fixed points of the following function
flz)=a® —da +6
Solution: We can find the fized points by solving the following equation:

fla) ==
then, we get
¥ —4dr+6=1x

hence
22 —5r4+6=0

then
(x—2)(x—3)=0

hence, there are two fized points
T=2andx =3
Example 1.14. Find the Equilibrium points of the following difference equation
Tpt1 = 20,(1 — )

Solution: Set
T =27(1—7)

by solving the previous equation, we get two equilibrium points

1
and T = —
2

)

T =
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1.6.2 Stability Theory

One of the main objectives in the theory of dynamical systems is the study of the
behavior of orbits near fixed points, in other words, the behavior of solutions of a
difference equation near equilibrium points, such investigation is called Stability
theory, which will be one of our main focus henceforh. To do this investigation, we

begin by introducting the basic notions of stability.

Definition 1.4. [8] Let f: I — I where I is an interval in the set of real numbers
R and T be an equilibrium point of the difference equation

Tnr1 = [(zn) (1.21)
then

1. The equilibrium point T of Eq. 1.21 is called stable if for every e, there exists
0 such that if

|SL’0—T‘ <
then

|z, — | <
foralln > 1, and all x € 1.

2. The equilibrium point T of Eq. 1.21 is called locally asymptotically stable
or (asymptotically stable) if is it stable and if there exist v > 0 such that if

lzo — | <y
and

lim x, =7

n—oo

3. The equilibrium point T of Eq. 1.21 is called global attractor if for every
xo €1
then

lim z, ==
n—oo
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4. The equilibrium point T of Eq. 1.21 is called global asymptotically stable
(or globally stable)if it is stable and is global attractor.

5. the equilibrium point T of Eq. 1.21 is called unstable if it is not stable

6. the equilibrium point  of Eq. 2.1 is called repller if there exists r > 0 such
that if g € I and
|z — | <1

then there exists N > 1 such that

ey —T| >r
Clearly, a repller is an unstable equilibrium point.

1.6.3 Graphical Iteration

One of the most effective graphical iteration methods to determine the stability of
fixed points is Cobweb diagram on the (z,,, 7,4 1) or (f™(zo), f*(zo)) plane. Cob-
web diagrams provide a relatively quick way of representing the repeated application
of an iterative function which are often used to simulate dynamics because iterative
functions are complicated to predict the results, and studying the numerical results
of applying the function again and again may not provide much insight into the
long-term behavior of the dynamical system.

To accomplish cobweb diagram, we draw the curve y = f(x) and the diagonal
y = x on the same plot.

We start at an initial point x5. Then we move vertically until we hit the graph
of f at the point (z¢, f(x0)). We then travel horizontally to meet the line y = x at

the point (f(x), f(x0)). This determines f(z) on the z axis. to findf?(xy), we move
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again vertically until we hit the graph of f at the point (f(x), f%(z0)), and then
we move horizontal to meet the line y = x at the point (f*(z0), f*(z0)). Continuing

this process, we can evaluate all of the points in the orbit of zy, namely, the set

{xOJf(x0>7f2(‘T0)7 e 7fn(x0>7 te } or eqlnvalently {'T07I17I27 Tyt }

Definition 1.5. Let p > 0, then the difference equation

Tpi1 = pxn(l —xy,) (1.22)

is called discrete Logistic difference equation. And the function

fulz) = pa(l — )
is called Logistic Map.

Example 1.15. Consider the difference equation x,+1 = px,(1 — x,) for p =2 and
w=3.6

1. Fined fixed points
2. Obtain numerical solution of the difference equation.

3. Determine the stability of fized points by using Cobweb diagram.

Solution: To find the fixed points of f,, we solve the equation px(l — z) = =.
This yields two equilibrium (fixed) points : Z; = 0 and Ty = “Tfl
e When p =2.8. The two fixed points are: 7, = 0 and Ty = 0.6429.
And the stability can be achieved from Cobweb diagram, see Fig.(1.2).
e When i =3.55. The two fixed points are: T; = 0 and T = 0.7183. Observe

that the solution of x,1 = 3.552(1 — x) does not converges, see Fig.(1.3). And

from Cobweb diagram the equilibrium point 7, is unstable, see Fig.(1.4).
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Discrete Logistic -r =2.8
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Figure 1.1: Solution of x,41 = 2.82(1 — ), 29 = 0.1
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Figure 1.2: 1 < pu < 3, Ty is asymptotically stable.
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Figure 1.3: Solution of z,4; = 3.55z(1 — ), o = 0.1
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Figure 1.4: p > 3, @5 is unstable.
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1.7 Criteria for Stability

In this section, we are going to introduce some powerful criteria for local stability of
equilibrium(fixed) points. Equilibrium points are divided into two types: hyperbolic
and non hyperbolic. A fixed point T of a map f is said to be hyperbolic if | f(Z)| # 1.

Otherwise it is non hyperbolic.

Theorem 1.16. /8] (Criteria for Stability) Let T be a hyperbolic fized point of a map
f, where f is continuously differentiable at . The following statements then holds
true:

1. If | f'(Z)| < 1, then the equilibrium point T of Eq. 1.21 is asymptotically stable.

2. If |f'(Z)| > 1, then the equilibrium point T of Eq. 1.21 is un stable.

In Example 1.15, there are two fixed points :

-1
fleand@:M—
1%

Observe that f'(x) = pu(1 — 2x)
e 7;=0. Thus f/(0) = p, and hence T; = 0 is stable when 0 < p < 1, and unstable
when g > 1

.EQZH

;1. Thus f'(T2) = 2— p, and hence by theorem 1.16, T» is asymptotically
stable if |2 — p| < 1. Solving the latter inequality for u, we obtain 1 < p < 3.
and Ty is unstable if p < 1 and g > 3. When p =1, f'(Z2) = 1, and p = 3,

f'(T2) = —1. These two cases will discuss next.
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The stability criteria when Z is non hyperbolic is summarized in the next two theo-

rems. The following theorem treats the case when f'(7) =1

Theorem 1.17. [8] Let T be a non hyperbolic fized point f'(ZT) = 1 of a map f, where
f" is continuous . The following statements then holds true:

o [f f"(T) #0, then T is unstable.
o If f"(T) =0 and f"(T) > 0, then T is unstable.

o If f"(T) =0 and f"(T) < 0, then T is asymptotically stable.

The preceding theorem may be used to establish stability criteria for the case
when f'(Z) = —1. But before doing so, we need to introduce the notion of Schwarzian

derivative.

Definition 1.6. (The Schwarzian derivative). Sf of a function is gevin by
B f///(x> B 3 (][‘//(ZE\)}2
f@) 20 f(x)

Theorem 1.18. Let T be a fized point of a map [ and f'(ZT) = —1. If f"(%) is
continuous, then the following statements hold:

Sf

[

o [fSf(ZT) <0, then T is asymptotically stable.
o [fSf(ZT) >0, then T is unstable.



Chapter 2

Preliminary and Basic Theory Of
Rational Difference Equations

2.1 Rational Difference Equations

The general form for the rational difference equation is :

ag + a1 + asTo + - - - + apTg

Tn41 =
b() + b1I1 + bgl’g + -+ bl[El
where the parameters ag, a1, , G, by, -+, by, are positive real numbers and the
initial conditions x1,---, z,, are nonnegative real numbers where m = max{k,!}.

The study of rational difference equations of order greater than one is quite challeng-
ing and rewarding, and the results about these equations offer prototypes towards
the development of the basic theory of the global behavior of solutions of nonlinear
difference equations of order greater than one. The techniques and results about these
equations are also useful in analyzing the equations in the mathematical models of
various biological systems and other applications.

The study of properties of rational difference equations has been an area of intense

36
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interest in recent years and reference therein. [11]. Ladas and Kulenovic in [11] have
discussed the dynamics of second order rational difference equations.In this research
we will investigate the following k%" order difference equation:

o+ ﬁxn + VXn—k
Bz, + Cx,

Tnt1 =

Solution of any difference equation depends on both parameters and initial conditions.
Solution of K" order rational difference equation may exhibit one or

more of the following characteristics:

e The solution converges to an equilibrium point.

The solution converges to aperiodic solution.

The solution contain one or more unbounded subsequences.

The solution is bounded but does not converge to an equilibrium point.

Every solution is periodic with the same period.

2.2 Definitions

Here, we list some definitions which will be useful in our investigation.

Proposition 2.1. [3] Let I be some interval of real numbers and let

fiIxI—1
be a continuous differentiable function. Then for every set of initial conditions x_y, -+, x_1,xq €
1, the difference equation
Tp4+1 = f(ITL?xn—k)un: 07]-7"' (21)

has a unique solution {x,}>> .
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Definition 2.1. [16] A point is T is called an equilibrium point of equation ( 2.1) if
T = f(f, f)
that is
Tp =717
for n > 0 is a solution of equation (2.1), or equivalently, T is a fixed point of f.

Definition 2.2. (Periodicity)

1. A solution {z,}° , of a difference equation is said to be periodic with period
pif x4, = x, for all n > —k.

2. A solution {z,}° , of a difference equation is said to be periodic with prime
period p or p-cycle if it is periodic with period p and p is the least positive
integer for which z,,, = x, holds.

Definition 2.3. [16] Let T be an equilibrium point of Eq.(2.1), and assume that [
is an interval of real numbers. Then

1. The equilibrium point T of Eq. 2.1 is called stable if for every ¢, there exists §
such that if
T pyT_1,T9 €[

and
T — T+ |0y — T+ -+ o —T| <0
then
|z, —Z| <€
for alln > —k

2. The equilibrium point T of Eq. 2.1 is called locally asymptotically stable if
it is stable and if there exist v > 0 such that if

T g, T 1,9 €I
and
.ClJ,k—f’+’l’7k+1—f’+“‘+’$0—f’ <7

then

lim z, ==
n—oo
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3. The equilibrium point = of Eq. 2.1 is called global attractor if for every
T p, T 1,9 €T
we have

lim z, ==
n—oo

4. The equilibrium point T of Eq. 2.1 is called globally asymptotically stable
if it is stable and is a global attractor.

5. The equilibrium point Z of Eq. 2.1 is called unstable if it is not stable

6. The equilibrium point T of Eq. 2.1 is called repeller if there exists r > 0 such
that if x_p,---x_1,2¢9 € I and

7 =T+ g1 =T o+ fro —F| <7
then there exists N > —k such that

ey — T >

Clearly, a repller is an unstable equilibrium.

Definition 2.4. [16](Linearization)

Let a = 2(z,7) and b = %(f, 7) where f(z,y) is the function in Eq.( 2.1) and =

is the equilibrium of Eq.( 2.1). Then the equation
Zny1 = 0Zp +bzp_g,n=0,1,--- (2.2)

is called linearized equation associated with Eq.(2.1) about the equilibrium point
T, and its characteristic equation is

ML g\ —p =0 (2.3)

2.3 Theorems

Theorem 2.2. [16] (Linearized Stability)

1. If all the roots of Eq.(2.83) lie in open disk |\| < 1, then the equilibrium point T
of Eq.(2.1) is asymptotically stable.

2. If at least one root of Eq.(2.3) has absolute value greater than 1, then the equi-
librium T of Eq.(2.1) is unstable
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Theorem 2.3. [3] Assume a,b € R and k € {1,2,---}. Then
la| + |b] < 1 (2.4)
15 sufficient condition for asymptotic stability of the difference equation
Tpi1 — 0y +bxy ), =0,n=0,1,2,--- (2.5)
suppose in addition that one of the following two cases holds:
1. kis odd and b <0 .
2. k is even and ab < 0.
Then 2.4 is a necessary condition for asymptotic stability of Eq.(2.5)
Theorem 2.4. [15] The difference equation

Yn+1 — byn + byn—k = Oan = 07 17 27

is asymptotically stable iff 0 < |b] < %cos(kLH)

Theorem 2.5. [11] consider the difference equation ( 2.1). Let I = [a,b] be some
interval of real numbers and assume that

[+ la,b] x [a,b] — [a,b]
18 continuous function satisfying the following properties:

1. f(z,y) is non increasing in x for each y € [a,b] and f(x,y) is non increasing
iny for each z € [a,b]

2. If (m, M) € [a,b] X [a,b] is a solution of the system

then m = M.
3. The equation f(z,z) = x has a unique positive solution.

Then Eq.( 2.1) has a unique positive solution and every positive solution of Eq.( 2.1)
converges to T.



Proof. set mg=a and My=5b. fort=1,2,3,---
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By induction, we have
mo < my--omy < <My < - <My < M
Also
Tny1 = f(@n, Tnk) < f(mo, mo) = M
Tny1 = f(Tn, Tng) > f(Mo, My) = my

and
Tni1 = f(Tn, Tnog) < f(ma,my) = My

Tpy1 = f(Tn, Tng) > f(My, My) = my

By induction, we have
m; <y <M, n>(—1)k+1

set
m = lim m; and M = lim M;

1—00 1—00

then we have
m < lim inf z; < lim supz; < M

By continuity of f
m = f(M,M) and M = f(m,m)

by assumption (2)
m=M=7T

Theorem 2.6. [11] Let I be an interval of real numbers and assume
[+ 1a, 0] x [a, b] — a, 0]

is continuously function satisfying the following properties
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1. f(z,y) is non decreasing in x for each y € [a,b] and f(z,y) is non increasing
in y for each x € [a, ]

2. If (m, M) € [a,b] x [a,b] is a solution of the system

m:f(m7M)
M = f(M,m)

then m = M.

Then Eq.(2.1) has a unique equilibrium T € [a,b] and every solution of Eq.(2.1)
converges to T

Proof. set
mo =a and My =05

for each 1 =1,2,3,---
m; = f(mi—la Mi—l) and M; = f(Mz'—la mi—1)
Then
my = f(mo, My) > a=mg and M, = f(My, mg) < b= M

and
mo = f(my, My) > f(mo, M) =mq > myg

My = f(My,my) < f(Moy, mo) = M; < My

By induction, we have

mog<my---m; < - <M< - <My < M

Also
Tpt+1 = f(xn; xn—k) S f(M()va) - Ml

Tpt1 = f(x’rhxn—k) > f(m07 MO) =Tma

and
Tp+1 = f(xna xnfk) (Mbml) = M2

<f
Tpt1 = f(‘rnwrnfk:) Z f(mh Ml) = ma2

By induction, we have

m; <x, < M;, n>(i—1)k+i
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set
m = lim m; and M = lim M;

1—00 1—00
then we have
m < lim inf z; < lim supz; < M

By continuity of f
m = f(m, M) and M = f(M,m)

therefore in view of (2)

m=M=72
[
Theorem 2.7. [5] Consider
Un+1 = f (Yn: Ynr); n=0,1,2, ..
where k € {1,2,...}. Let I = [a,b] be some interval of positive real numbers and

assume that
f i a, 0] x [a,b] — [a,b]

15 continuous function satisfying the following properties :
1. f(u,v) is nonincreasing in u and nondecreasing in v.
2. If (m, M) € [a,b] is a solution of the system
m = f(M,m) and M = f(m, M)

Then
m=M

Then the equation yni1 = f(Yn,Yn—r) has a unique positive equilibrium 7 and
every solution converges to 7.

Theorem 2.8. Assume that f € C [(0,00) x (0,00), (0,00)] is such that : f(x,y) is
decreasing in x for each fized y.and f(x,y) is increasing in y for each fixed x. Lel T
be a positive equilibrium of equation ( 2.1) then except possibly for the first semicycle,
every oscillatory solution of equation (2.1) has semicycle of length k

Proof. When k = 1, the proof is presented as Theorem1.7.1 in [11]. When k = 2,
the proof is presented as Theorem4 in [1]. We just give the proof of the theorem for
k = 3. The other cases for & > 4 are similar and can be omitted.
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Let {x,} be a solution of equation( 2.1) with at least four semicycles. Then there
exists N > 0 such that either

TN-1 <T < Tngo

or
TN-1 2T > TNt

we will assume that :
TN-1 <T < Tngo

other cases is similar and will be omitted. The by using monotonic character of f(z, y)
we have
ey = f(@ni2,2n-1) < f(Z,7) =T
and
Tyia = fxnys,zn) > f(Z,7) =7
thus
ITN+3 < T < TN44

The proof is complete. [J

Theorem 2.9. Assume that f € C [(0,00) x (0,00),(0,00)] and that : f(z,y) is
decreasing in both arguments. Let T be a positive equilibrium of equation ( 2.1) then
every oscillatory solution of equation ( 2.1) has semicycle of length at most k.

Proof. When k = 1, the proof is presented as Theorem1.7.2 in [11]. We just give the
proof of the theorem for £ = 2. The other cases for kK > 3 are similar and can be
omitted. Assume that {z,} is an oscillatory solution with three consecutive terms
TN_-1,TN_1,TN+1 ID & positive semicycle

IN—2 2T, IN-1 2T, IN 2T

with at least one of the inequalities being strict. The proof in the case of negative
semicycle is similar and is omitted.
Then by using the decreasing character of f. We obtain

tniye = f(ny1,2v01) < f(T,2) =7

which completes the proof.
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For k = 3 assume that {z,} is an oscillatory solution with four consecutive terms
TN_1,TN,TN11, TN N & negative semicycle

TN ST, oy ST, N1 ST, T2 ST

with at least one of the inequalities being strict. The proof in the case of positive
semicycle is similar and is omitted. Then by using the decreasing character of f. We
obtain

tns = [(@ny2,2n-1) > f(T,2) =7

which completes the proof.
O

Theorem 2.10. Assume that f € C [(0,00) x (0,00), (0,00)] is such that : f(z,y) is
increasing in x for each fived y.and f(x,y) is decreasing in y for each fized x. LetT be
a positive equilibrium of equation ( 3.3) then every oscillatory solution of equation
(3.3) has semicycle of length at least k

Proof. When k = 1, the proof is presented as Theorem1.7.4 in [11]. We just give
the proof of the theorem for k = 2.the other cases for £ > 3 are similar and can be
omitted.

Assume that {x,} is an oscillatory solution with three consecutive terms

IN-1, TN, TN+1
such that
TN-1 < T <INyl

or
TN-1>T > TNyl

we will assume that
TN < T < Ty

the other case is similar and will be omitted. Then by using decreasing character of
f we obtain

Tny2 = f(ani1,2n-1) > (7, 7)

Now, if xy > T then the result follows. Otherwise xy < Z. Hence

N3 = f(ango, on) > f(7,7) =7

which shows that it has at least three terms in the positive semicycle



Chapter 3

a+BTp+yT,_
Brp+Czy g

Dynamics of z,, 1] =

In this chapter and chapter 5 we present the main part of this theses, that is studying
and investigating the difference equation

o+ ﬁxn + YTn—k
Bz, + Cx,

Tpy1 = n=0,1,2,--- (3.1)

where where the parameters «, 3,7y, B, C', and the initial conditions z_p, x_11, -+, xg
are nonnegative real numbers, k = {1,2,3--- }.
This chapter includes mathematical issues, and methodologies that used in such

monographs.

3.1 Change of variables

The change of variable

Tn = 5Yn

B

reduces Eq.(3.1) to the difference equation

Ly
Yoy = XY FWnk g4 93 (3.2)
Yn + QYn—k

46
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where

I
p_ 52aq_B7 _ﬁ

with p, ¢ € (0,00) and

Yky Y—k+1, =5 Y-1, Yo € (07 OO)

Proof. Since

xzﬁy
n BTL

Tn+1 = FHYn+1
B

Tn—k = Eynfk

substitute in the Eq.(3.1). We get
ﬁy - Oé_'_ﬂ%yn"i_’)/%ynfk
S Yn+1 —
B B%yn + C%ynfk

by pulling a common factor %,

%(%a + B yn +’7yn—k>

SYn+1 =
B %(B Yn + C ynfk)
hence
y 6(%@ + Yn +5yn—k>
SYn+1 —
B B (yn + B yn—k)
Let
_aB C - ~y
p 52 Jq - B’ - /8

reduces the Eq.(3.1) to

n l n—

D+ Yn + Ly E =01,
Yn + QYn—k

The proof has been completed.

Yn+1 =
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3.2 Equilibrium Points

In this section we investigate the equilibrium point of the nonlinear difference equation

+ Y + Yy, —
Yoy = LI T Tk 01,2, (3.3)
Yn + qYn—k
where the parameters p, ¢, [ and the initial conditions y_x, y_g+1, -+, Y—1, Yo are

nonnegative real numbers, k = {1,2,3,---}. To find the equilibrium point in view of

its definition, we solve the following equation

y_p+§+@
y+qy
by cross multiplication, we get
F(l+q) =p+yl+1) (3.4)

by rearranging the terms, we get

(1+9y*—1+Dy—p=0

now, we use the quadratic formula to solve the above equation

(1+0) £/ +1)2+4p(1+q)
2(1+q)

g:

Hence, the only positive equilibrium point of Eq.( 3.3) is:

(1+0)+/(1+1)2+4p(1+q)
2(1+9q)

y= (3.5)
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3.3 Linearization

For our investigation. Let

is the function in Eq.( 3.3)

Definition 3.1. Linearized Equation The equation

0 0
ZnJrl = 8_£(g7 g>2n + a_i(ga g)'zn*k (36)

is called the linearized equation associated with Eq.( 3.3) about the equilibrium point

T

since

p+u+ v
flu,v) ==————
U+ qU

we have,

of  (u+qu)—(p+u-+lv)
ou (u+qu)?
_utqu—p—u—Iv
B (u+ qv)?
_qu—lv—p
BCER L
(g=Dv—p
(u+qv)?

and



Of _lu+tqv) —q(p+u+lv)

v (u+qu)?
~lu+lqu — pg —ug — lqu
- (u+ qv)?
_ lu—qu—pg
(u+ qv)?
(I—qu-pg
CETE
(g —Du+pg
(u+q0)?

hence

af _ _
ou”’

la=Dy—p
(7 + qy)?

_(a=Dy—p
y*(1+q)?

—~

but, by rearranging Eq.( 3.4), we get

_2:p+gj(1—i—l)

1+4¢q
then
0w YT (e g (D
(q—Dy—p

(1+q)(p+ (1+Dy)

50

(3.7)
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now

of (¢ — Dy +pq
50 9 (5 +q))?
la—=Dy+pg
y2(1+q)?
(¢ — 1Dy +pq

B g(1+1
(1 + q)?(BH)

(q—1y+pq
(1+q)p+ (1+1)y)

The Linearized Equation associated with equation 3.3 about the equilibrium point

T 1s:

ooo_ le=by-p . (a—Dy+pg
T A+ A+ A+ +0y Tt

Lo le=lhg-p (¢ =Dy +pq
A+ 10y " U+ + 1+ D7)

Zn—k =0 (3.8)
and its characteristic equation is :

R C bl et Y (@=D¥+p2  \nk_
! 1+q)p+ 1+ D7) rgp+a+ny (3.9)

3.4 Local Stability

The aim of this section is to establish the stability of positive equilibrium point of
eq.( 3.3). In sections 3.2 and 3.3, We have fined that Eq.( 3.3) has the only positive

equilibrium point:

(1+0)++/(1+0)2+4p(1+q)
2(1+4q)

y:
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and the linearized equation is given by:

L (q—Dy—rp B (¢ — 1Dy +pq I
U+ A+ U+ A+
where
(¢=Dy—p  _ (¢=Dy+pg
I+q)p+1+0y) "~ (A+qp+(1+1)7)

it is necessary to mention that the equilibrium point of Eq.( 3.3) is locally asymp-
totically stable for all values of the parameters p and q when k = 1.(see [6])

The following theorem is a direct consequence of theorems ( 2.2) and ( 2.3).

Theorem 3.1. The unique equilibrium point y of eq. ( 3.3) is locally asymptotically
stable in the following cases :

1. q > 1 there are two cases

o [ >1 impliesq>1
e g<1&l<1.

2. q<l

o if y(l —q) < pq i.e. g<%

o ify(l—q)>pq andg<173q2’+7qli.e. g>%and1j<173§’+ﬂﬂ

It is important to note that

e When £ is odd and ¢ < [. Then y > % is necessary and condition for local

stability.

e When £k is even and ¢ > [. Then y < ﬁ is necessary and condition for local

stability.
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e When £k is even and ¢ < [. Then y < %} is necessary and condition for local

stability.
Proof. By theorem ( 2.3)

1. When g > [ there are two cases:
e (q—Dy>pie. g>ﬁ
la| + |b] < 1
by substituting values of a and b , we have

(q—=Dy—p (q— Dy +pq

T o+ 0400 T Tt + 1Dy

then - -
(q—=Dy—p+(g—1Dy+pg

Tt rahg)

by multiplying, we have

(q—Dy—p+@—Dy+pe<(1+q)(p+1+17)

then
20—y —p+pg<p+ 1 +Dy+pg+ql+1)y
SO
20—y —2p < gL+ 1)(1+q)
hence
—2p < y[(1+ (1 +¢q) —2(g —1)]
then

—2p <y[l+1+q+1lqg—2q+ 2l

SO
—2p < g[l —q+ 3l +lq]

note that when [ > 1, then y[1 — ¢ + 31 + lq] is strictly greater than zero.
And when ¢ < 1, also implies g[1 — g + 3l + lq] is strictly greater than zero

e (—ly<piey< £ We have the following inequality :

p—(q—1)y (¢q— Dy +pq

T+t 09 Trae+a+09)




then - -
p—(¢—Dy+ (¢g—1y+pq

Qrop+r @Dy

hence
ptrpg<p+(1+0Dy+pg+ql+1)y

cancel the common terms in both sides, we get
0<+1+0y+q(l+Dy
which is true for all values of [,¢q,T

2. When ¢ < [
there are two cases:

e when y < £L

l—q
=gt _ —(-q)y
lal = Graprasog 0d bl = cprang
:> B B
(l—qu+p pq— (I —q)y
I+qp+ 1T +Dy  A+qgp+ 1+
=
(l—q)y+p+pg—(1—q7 1
1+q)p+ (1+0y
= +
p+pq o
1+q)p+ (1+1Dy
=
p+pg<(1+qp+(1+1)7
=
p(1+¢q) <(1+q[p+ (1+1)7]
=
p< [p+ 1 +1)y
=

0<(1+10)y

<1
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_ (-9)g+p _ (I—q)7—pg
ol = Topramg @ Pl = mopraim

(l-qy+p (l—q)y — pq
I+qgp+1+Dy  (1+qp+(1+1D)7

<1

: _ _
(l-qy+p + (l—Q)y_—pq<1
(I+q)p+ 1+
_—
20-q)y+p—pg<(1+q)p+ (1+1)y]
_—
2(-q)g+p — pg<p+{1+0y +pg+q(l+1)y
_—
2(-qy—(1+0)y —q(1+1y < 2pq
_—
200y —2qy —y—-1l y—qu—ql § <2pq
_—
ly—3qy — y —qly < 2pq
_—
yll —3q—1—ql] < 2pq
_—

2
5o« Pq
l—3¢g—1—ql

]

We have investigated the two cases ¢ > [ and ¢ < [ in previous theorem. The next

theorem about case ¢ = [. When ¢ = [ the Eq.(3.3) becomes

+ Yn + QYn—
Yoy = L T (3.10)
Yn + qQYn—k

1+q++/((1+9)2+4p(1+q
2(14q)

and the positive equilibrium point 7 = ) Observe that y > 1.
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Theorem 3.2. Assume that g =1

1. Suppose that k is odd. Then the equilibrium point § of Eq.(3.10) is asymptoti-
cally stable.

2. Suppose that k is even. Then the equilibrium point § of Eq.(5.10) is asymptoti-
cally stable iff g = 1.

T of (— — — Of /— —
Proof. Let f(x,y) = EE2%  Assume a = a—i(y,y) = WIM and b = a—g(y,y) =

T+qy
m. Observe t.hat a < 0 and ab > 0. Then the proof is a direct sequence of
theorem 2.3. the proof is complete. O

3.5 Invariant Intervals

The fundamental idea if invariant interval is widely understood, and for the sake
of clarity, we give the following definition which will be the key concepts in this

monograph.

Definition 3.2. [3|(Invariant interval) An invariant interval for the difference equa-
tion ( 2.1) is an interval I with the property that if two consecutive terms of the
solution fall in I then all subsequence terms of the solution also belong to I. In
other words, [ is an invariant interval for Eq.( 2.1) if zx_gy1, -+ ,an_1, 25 € I for
someN > 0, then z,, € I for every n > N.

Theorem 3.3. Let {y,,}°° _, be a solution of Eq.( 3.3). Then the following statements
are true:

1. Suppose p+ 1 < q and assume that for some N > 0,

p+1
YN—ky YN—k+1, """ , YN € [Tvl]

then y,, € [’%l, 1] for allm > N
2. Suppose p + 1 > q and assume that for some N > 0,

p+1
YN—k; YN—Kk+1, YN € [1aT]

then y,, € [1, ’%l] foralln > N
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Proof. 1. The basic ingredient behind the proof is the fact that when u, v €
[pTH, o0), the function
u+p+lv
flu,0) = ———
U+ qU

is increasing in v and decreasing in v. If for some N > 0, pTH S YN_ky UN—kil, ~ YN <
1 then

_ptyn+Hlyn—i
YN+1 =
YN + QYN—k

<p+yN+l
T oyy g2

=1

and

p+yn +lyn_i
YN+1 =
YN + QYN—k

’%l+p+l
ptl
q +q

(p+D[;+1]

1pHl
[l + 55~

P+
q

The proof is follow by induction.

2. Ifforsome N > 0,1 < yn_g, YN—kil, "= YN < pTH then
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P+ yn + lyn—k
YN + QYN—k

YN+1 =

<£%+p+l
- 1+4gq

(p+D[; +1]
qlg +1]
_ptl

q

and

_ptyntlyn—s
YN+1 =
YN + qQYN—k

S yn +p+1
a ?JN-IFCI[pTH]

=1

and the proof follows by induction.
The proof is complete. Il

3.6 Existence of two cycles

In this section we give the necessary and sufficient conditions for Eq.( 3.3) to have
a prime period-two solution and we exhibit all prime period-two solutions of the

Eq.( 3.3).
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Definition 3.3. Let {x,}>2 . be a solution of Eq.( 3.3). We say the solution has a
prime period two if the solution eventually take the form:

7¢7¢7¢7¢7¢)¢7"'

where ¢, 1) are distinct and positive.
Theorem 3.4. Two cycles theorem
1. The Eq.( 3.3) has no nonnegative prime period two if

(a) k is even.
(b) k is odd and [ < 1.
(c) k is odd, and q > 1.
2. Ifkis odd and 1 > 1 and q < 1, then the Eq.( 3.3) has prime period two solution
e, 1, d ), - -+ where the values of ¢ and v (positive and distinct) are
solutions of quadratic equation :
[—1 [—1
2 r+ paT .

re — 0
q q(1—q)

provided the solution exists.

Proof. 1. Assume for the sake of contradiction that there exist distinctive and
positive real numbers ¢ and v such that

7¢7¢7¢7¢7¢7¢7"'
is a prime period two solution of Eq.(3.3).there are two cases to be considered

(a) k is even in this case ¢ and 1) satisfy

¢:p+¢+w
v+ qy
and
¢:p+¢+w
¢+ qo
SO
(1+q)=p+od+1¢ (3.11)
(1 +q) =p+v+1 (3.12)

by subtracting Eq.( 3.12)from Eq.( 3.11), we have
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O=pt+o+iop—p—v -1y
0=0¢—y+Ii¢—1)
0=(¢—)(1+1)

that implies ¢ = v which contradicts the assumption ¢ # ¥
(b) k is odd in this case ¢ and 1 satisfy

¢:p+w+w
VY +q¢
and
¢:p+¢+w
¢+ qv
by multiplying, we get
o+ qp* =p+ ¢+ (3.13)
P+ g =p+ o+ 1 (3.14)

by subtracting Eq.( 3.14) from Eq.( 3.13), we have

49° — q* = + 1 — ¢ — Iy
(¢ —V)(o+9)=lp—lp+y—¢
(¢ =)@+ ) =Up =) — (¢ —)
(¢ =)@ +v) = (¢ —¥)(I-1)

¢+¢=£%l (3.15)

observe that if [ < 1 then ¢+ < 0 which contradicts the hypothesis that
¢, are positive and distinctive.and this proves case (1 b).

(¢) Adding Eq.( 3.13)and Eq.( 3.14), we have:
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200+ q¢° + qp? =2p+ o+ v+ 1o+ 1Y

200 + q(¢* +9*) =2p+ o+ b + (P + )
200 + q(¢° + 0?4+ 200 — 200) = 2p+ ¢+ 1h + (P + )
2¢1) — 2qtp + q(¢* + * + 200) = 2p + (L + 1) (¢ + ¢)

oY(2—2q) +q(o+v)* =2p+ (1+ l)(l_Tl)
¢w<2—2q>+q<l;1> —op (1t q1>
(2 —20) = 2p+ (14 Z><Z‘Tl> - q<l‘71>2
oo —2) =2p+ 1+ - L=
(2 ) — 2y (=D = (1= 1)
q
o0(2 - 29) = 2p+ 2D
o(2 —2q) = w
q
_2pq—|—2(l—1)
o= q(2 —2q)
thus 1
0= .

observe that if ¢ > 1 then ¢ < 0 which contradicts the hypothesis that
¢andi) are positive and distinctive.

2. If g < 1and [ > 1, then we have Eq.( 3.15)and Eq.( 3.16). Now, construct the
quadratic equation:

[—1 [—1

2 p et (=1
q q(1—q)

hence, the values of ¢ and 1 are the solutions of the above quadratic equation.

i.e.

=0

11:|:\/Tl _ gpat(=1)

q(1—q)

the proof is complete. O
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3.7 Analysis of Semicycle and oscillation

We strongly believe a semicycle analysis of the solutions of a scalar difference equation
is a powerful tool for a detailed understanding of the solutions and often leads to
straightforward proofs of their long term behavior.

In this section, we investigate semicycles and we present some results about the
semicycle character of solutions of the difference equation ( 2.1) under appropriate

hypotheses on the function f.

Definition 3.4. [15] Semicycle: Let {y,}>> _, be a solution of equation ( 2.1) and y
be a positive equilibrium point. We now give the definitions of positive and negative
semicycle of a solution of equation ( 2.1) relative to the equilibrium point g

e A positive semicycle of a solution {y,}>° , of equation ( 2.1) consists of a
7string” of terms {y, yii1, -+, Ym}, all greater than or equal to the equilibrium
y, with [ > —k and m < oo and such that

either | = —k, or l > —k and x;_1 < ¥y

and
etther m = 0o, or m < 0o and Yy < Y

e A negative semicycle of a solution {y,}>> . of equation ( 2.1) consists of a
"string” of terms {y;, Y111, ,Ym}, all less than to the equilibrium g, with
[ > —k and m < oo and such that

either | = =k, or l > —k and x;_1 >y
and

either m = oo, or m < oo and Ymi1 > Y

The first semi-cycle of a solution starts with the term v, and is positive if y, >

and negative if y_j < 7.

Definition 3.5. [11]( Oscillation )
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1. A sequence {z,} is said to oscillate about zero or simply to oscillate if
the terms =z, are neither eventually all positive nor eventually all negative.
Otherwise the sequence is called nonoscillatory. A sequence is called strictly
oscillatory if for ng, there exist ny,ny > ng such that x,, x,, < 0.

2. A sequence x, is said to oscillate about 7 if the sequence x,, — T oscillate.
The sequence x,, is called strictly oscillatory about 7 if the sequence z,, — @
is strictly oscillatory.

Again The aim of this section is to present the analysis of semicycles of solution

of Eq.(3.3) relative to equilibrium point g and based on invariant interval of Eq.( 3.3)

and based on nondecreasing and nonincreasing of the function f(x,y) = p;r_f—;“lyy.

Let {y,}22 _, be a solution of Eq.( 3.3). Then observe that the following identities

are true:
p
=1~ Yn—k
Ynir — 1 = (q — D[ 3.17
1= (- O (3.7
p+l. (1= +p(1 = ynr)
Ynt1 — ( ) = (3.18)
Yn + qYn—k
We will analyze the solution {y,}>° _, under three assumptions:
First, will analyze the solution {y,}>> _, under assumption that
p+l>qgandqg>1 (3.19)

So we have the following consequence which can be resulted directly by using

Eq.( 3.17) and Eq.(3.18)

Lemma 3.1. Assume that ( 3.19) holds and let {y,}>> . be a solution of
Eq.( 3.3). Then the following statements are true :

1. If for some N >0, yny_ < pTH. Then yni1 > 1.
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If for some N >0, yny_ = ’%l. Then yni1 = 1.

If for some N >0, yn_r > ’%l. Then yni1 < 1.

If for some N >0, yv—x > 1. Then yni1 < pTH.

If for some N > 0, yy_r < 1. Then yni1 > 1.

If for some N >0, 1 <yn_p < ’%l, then 1 < yyy1 < 1%1_

NS &

_[ffO’I" some N > O; 1< YN—k," "5 YN-1, YN < I%Z; then Yn € [171%[] fOT
n > N that is [1, ’%l] is an invariant interval for Eq.( 3.3).

8. 1<y< I’T“

Indeed: whenp+1 > q

p+1l>q

pl + 12 > gl

pq+pl+ 12> 1qg+pg

pq > pq+lg—Ip—1?

pg > (p+1)(g—1)

then we have : ) bl
q—l> . (3.20)

The next result which is a consequence of Theorem 2.9 express that when (3.19)
holds, every nontrivial and oscillatory solution of Eq.( 3.3) which lies in the
interval [1, I’TH] oscillates about equilibrium point 7 with semicycle of length at
most k.

Theorem 3.5. Assume Eq.( 3.19) holds. Then every nontrivial and oscillatory
solution of Eq.( 8.3) which lies in the interval [1, ’%l] oscillates about y with
semicycles of length at most k.

Second, we will discuss the analysis of semicycles of solution {y,}>> , under as-
sumption that

p+l<gq, g>1 (3.21)

The following result is a direct consequence of Eq.(3.17) and Eq.(3.18).
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Lemma 3.2. Assume 3.21 holds and let {y,}>>_, be a solution of Eq.( 3.3).
Then the following statements are true:

If for some N > 0, ’%l

If for some N >0, I’TH
n>N.

7. B g <L

Indeed: when p+1 <
p+1l<q

pl+1? < ql
pqg+pl+ 12 <lg+pg
pq <pq+lqg—Ip—1?
pg < (p+1)(g—1)
then we have :

S G e v~

If for some N >0, yn_
If for some N >0, yn_
If for some N >0, yn_
If for some N >0, yn_

g > pTH then yyy1 < 1
k:pTH then yny1 =1
k<1 then ynyy1 > pTH
k< pTH then yny1 > pTH

< yn_r <1 then pTJ’l < yn+1 <1

S YNk Ynot, v < 1, then g, € 2] for
q
D p+1
< 3.22
B (3.22)

That is [’?T’Ll, 1] is an invariant interval for Eq.( 3.3)

The next theorem, which is the result of Theorem 2.10 states that when (3.21)

holds, every nontrivial and

oscillatory solution of Eq.(3.3) which lies in the

interval [”TH, 1] oscillates about equilibrium point y with semicycle at of length

at least k.

Theorem 3.6. Assume Eq.( 3.21) holds. Then every nontrivial and oscillatory
solution of Eq.( 3.3) which lies in the interval [pTH, 1], after the first semicycle,
oscillates about iy with semicycles of length at least k.

Finally, we will analyze the semicycles of solutions {y,, }°° , under assumption that

p+l=gq (3.23)
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In this case Eq.( 3.3) will be

P+ Yo+ Wt
1l = 3.24
Yt Yn + (p + l)yn—k ( )
with unique equilibrium point y = 1.
Also equations ( 3.17) and ( 3.18) are reduced to
1—y,_
Yns1—1=p In_k (3.25)

Un + (p + l)ynfk

Lemma 3.3. Let {y,}°° , be a solution of Eq.( 3.24). Then the following
statements are true:

1. If for some N >0, yn_x < 1, then ynyy1 > 1
2. If for some N >0, yy_p =1, then yy+1 =1
3. If for some N >0, yy_r > 1, then yy11 <1

Th next result is direct consequence of lemma 3.3.

Corollary 3.1. Let {y,}°° . be a solution of Eq. (3.24). Then {y,} oscillates
about the equilibrium y = 1.

3.8 Global Stability Analysis

Our aim in this section is to establish Global stability of equilibrium point § of

Eq.( 3.3).

Theorem 3.7. Assume that ¢ = . The equilibrium point y of Eq.( 3.3) is globally
asymptotically stable.

Proof. We proved that equilibrium point T is asymptotically stable in Sec. 3.4. Now
since f(u,v) is non increasing in both arguments, and solution of the system:
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 ptM+qgM
- M4 qM
_pF+m+gm
B m+qm

M

implies m = M. Then by Theorem 2.5, every solution of Eq.( 3.3) converges to . [

Theorem 3.8. Assume that 3.19 holds. Then the equilibrium point § of Eq.( 3.3)
is globally asymptotically stable in the interval [1, ’%l].

Proof. Tt is enough to show that 7 is global attractor. The condition ( 3.20) guarantees
that f(u,v) is decreasing in both arguments, and solution of the system:

_ pt+tM+IM
- M+ qgM
_pt+m+lim
B m—+qm

M

implies m = M. Then by Theorem 2.5, every solution of Eq.( 3.3) converges toy [

Theorem 3.9. Assume that 3.21 holds. Then the equilibrium point § of Eq.( 3.3)
is globally asymptotically stable in the interval [EXL, 1],

q Y

Proof. Again it is enough to show that 7 is global attractor. The condition ( 3.22)
guarantees that f(u,v) is increasing in u and decreasing in v, and solution of the
system:

p+m+IM
m=-————
m+ qM
_pt+M+Im

M
M+ qm

implies m = M. Then by theorem 2.6, every solution of Eq.( 3.3) converges toy [



Chapter 4
The Special Cases ayBC =0

In this chapter we examine the character of solution of Eq.(3.1) where one or more
of the parameters in Eq.(3.1) are zero. There are many such equations arises by
considering one or more parameters are zero.

Observe that some of these equations are meaningless like the case when the
parameters in the denominator are zero, and some of them are quite interesting and

have been studied by many authors.
4.1 One parameter = (

In this section we examine the character of solution of Eq. (3.1) where one parameter

in Eq.(3.1) equal zero. There are five such equations, namely:

Bxn + Y Tpi

n — — - 0,1,2 41

Tnt Bz, + Cx,_ (4.1)
a+ YT,k

g = Ik 0,1, 2., 4.2

Tnl Bz, + Cx, " (42)
o+ P,

n - y — 07 1,2 43

Tnl Bx, + Cx,_}, " (43)

68
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o+ ﬁxn + VYTn—k

T = T —0,1,2... (4.4)
Tpp1 = 25 &Cg; Tk —0,1,2... (4.5)

where the parameters «, 3, v, B, C' are nonnegative real numbers and the initial con-
ditions x_j,r_gi1,- -+ ,xg are arbitrary nonnegative real numbers.

— Brntyrn g

4.1.1 Dynamics of z,11 = 5", .

The Eq.(4.1) was investigated by Sai’da Abu-baha’ in [1].

Lemma 4.1. The change variables x, = Zy, reduces Eq.(4.1) into the difference

equation

Yn+1 = ’ :()7]-72 (46)
" qYn + Yn—k
where p = g and q = g with p,q € (0,00) and the initial conditions y_g, -+, Yo are
nonnegative real numbers.
Proof. Substitute z,, = Zy, in Eq.(4.1), we get
l _ ﬁ%yn + W%yn—kz
C T Blyn + C 2y
then
ly _ 6%1 + YYn—k
¢/t By, + Cyp—i
thus 3
V(EYn + Yn-r)
“Yn+1 =
hence 5
SYn Tt Yn—k
Yn+1= 5
gyn + Yn—k
set p = % and g = g, we get Eq.(4.6) m

She has shown the two cases p > ¢ and p < ¢ give rise to different dynamic

behaviors. She examine the investigated of the unique positive equilibrium point
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Yy = ’%, period two solution, semicycles, invariant intervals, and global stability.

[}

The main results were :

1. when p > ¢

e the equilibrium point is locally asymptotically stable.

there no period two solution.

the solution oscillates about equilibrium point 7 with semicycle of length
k41 or k+2 except possibly for the first semicycle which may have length

k.

The solution take its values between 1 and §-

The equilibrium point is globally asymptotically stable if p < pg+ 3¢ + 1

2. when p < ¢

(a) kis even.

e the equilibrium point is locally asymptotically stable.

e the solution oscillates about equilibrium point 7§ with semisycle of
length k after the first semicycle or it converges monotonically to the
equilibrium point.

e The solution take its values between § and 1.

(b) k is odd.
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1. ¢ >pg+3p+1.
e The equilibrium point is unstable.
e There is a period two solution.

e The solution oscillates about equilibrium point 7 with semisycle
of length k after the first semicycle or it converges monotonically

to the equilibrium point.
e The solution take its values between § and 1.
. ¢g<pg+3p+1
e The equilibrium point is locally asymptotically stable.

e The solution oscillates about equilibrium point 7 with semisycle
of length k after the first semicycle or it converges monotonically

to the equilibrium point.

e The solution take its values between § and 1.

e The equilibrium point is globally asymptotically stable.

a+YTp—k

4.1.2 Dynamics of z,41 = 5 77—

Lemma 4.2. The change variables x, = Zy, reduces Eq.(4.2) into the difference
equation

b + Yn—k
Ypoy = LIk 01,2, 47
i qQYn + Yn—k ( )
where p = C;—E;’ and q = g with p, q € (0,00) and the initial conditions y_g,- -, Yo

are nonnegative real numbers.
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Proof. Substitute z,, = Zy, in Eq.(4.2), we get

ly _ a+ W%y’n—k
C i B%yn + C%ynfk
then
o +
1 . ~ YYn—k
C?" ” Byu + Cyus
thus
vy y /Y(O;_g + yn—k)
“Yn+1 —
hence c
52 T Yn—k
Yn+1 = —Ey T
C n n—
Set p = ‘f;—g and ¢ = g, we get Eq.(4.7). ]

The Eq.(4.7) was investigated by Devalut, Kosmala, and Ladas in [5].

a+pz,

4.1.3 Dynamics of z,1 = 57" —

Lemma 4.3. The Eq.(4.3) is reduced by the change variables x,, = %yn into the

+ Yn
oo = LTI —0,1,2... (4.8)
Yn + qYn—k
where p = %—B and q = % with p, q € (0,00) and the initial conditions y_g, -, Yo

are nonnegative real numbers.

Proof. Substitute x,, = %yn in Eq.(4.3), we get

B, ot BEyn
S Yn+1 —
B B%yn + C%yn—k
then .
g G +0un
B T By, + Cyu s
thus 5
3 B(% + yn)

SYn+1 =
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hence B
57+ Un

Yn + %yn—k
Set p = %—? and ¢ = %, we get Eq.(4.8). ]

Yn+1 =

The Eq.(4.8) was investigated in [3]. They have concentrated on invariant inter-
vals, the character of semicycles, the global stability, and the boundedness.

a+Bx,+YTn—k

4.1.4 Dynamics of x,.1 = Ot

Lemma 4.4. The Eq.(4.4) is reduced by change of variable x,, = Gy, + &, into the
difference equation

P+ qYn
i1 = ————,n=0,1,2.. 4.9
Yn+1 1+ ynr (4.9)
where p = —‘”Cjﬁ and q = % with p, q € (0,00) and the initial conditions y_, -+, Yo

are nonnegative real numbers.

Proof. Substitute z,, = Zy, + & in Eq.(4.4). We get

C
Ty X a+ B(Eyn+3) +7(GYn—k + 3)
cortt o C(ZYn-r + 2)
then
7, _a+ 8@+ ) 1@+ 3E) v
¢t C(Zynr + 2 C

eliminate C' in the denominators

VYYn4+1 = -
i Yn—k + %
thus v v v v ol v
a+ B(EYn + &) + Y (EYnk + ) =V (EYnk + )
VYYn+1 = 5 5
Eynfk + C
then - "
YYn+1 = ~ v
ayn—k + C
then .
By + 5
YYn+1 = 5

Yn—k + 1
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then
RCas e
TYYn+1 = 1 n Yn—k
hence c 3,8
_ it
Yn+1 = 1 n Yn—k
Setp:'f‘y—g—l-g:% andng, we get Eq.(4.9). L

The Eq.(4.9) was investigated in [4]. The authors studied the global stability,
boundedness of positive solutions, and character of semicycles of Eq.(4.9).

OH_ﬁxn +7xn—k'

4.1.5 Dynamics of x, .1 = i

Lemma 4.5. The Eq.(4.5) is reduced by change of variable x,, = %yn + %, into

p + qYn—k
i1 = ———— n=0,1,2... 4.10
Yn+1 1+, n ( )
where p = aBﬁ;ZCﬁ and q = % with p, q € (0,00) and the initial conditions y_g, -+ , Yo
are nonnegative real numbers.
Proof. The proof of this case is similar to Eq.(4.4) and can be omitted. O

The Eq.(4.10) was investigated in [10] by Mahdi Dehghan, M. Jaberi Douraki,

and M. Razzaghi.
4.2 Two parameters are zero

In this section we examine the character of solution of Eq. (3.1) where two parameters

in Eq.(3.1) are zero. There are eight such equations, namely:

VYLn—k

Tpt1 =
Bx, + Cx,_y

n=0,1,2.. (4.11)
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Tl = %,n —0,1,2... (4.12)
Tl = m”%:i’““ —0,1,2... (4.13)
Ty = m%;f“,n_o,m... (4.14)
Tl = m,n —0,1,2... (4.15)
Tl = %ﬁ“"“,nzo,m... (4.16)
Tpy1 = Og;—?ix:,n:(),lﬂ... (4.17)
P %Z”",n ~0.1.2. (4.18)

where the parameters «, (3,7, B, C' are nonnegative real numbers and the initial

conditions x_j,r_gi1,- - ,xg are arbitrary nonnegative real numbers.
: _ VTn—k
4.2.1 Dynamics of x,, .| = BrgCr s

Lemma 4.6. The Eq.(4.11) is reduced by the change of variables x,, = 5, into

By
Yn—k
Yni1 = P+ ,n=20,1,2,.. (4.19)
where P = % € (0,00) and the initial conditions y_,---, Yo are nonnegative real
numbers.
Proof. Substitute x,, = Biyn in Eq.(4.11). We get
72
Y _ By,
- C
Zgyn+l j%'+'2£:%;
cancel % from two sides, we get
.
1 — Yn—k
Yn+1 o +‘—£Zl—

Yn Byn—k
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then X
L Yn—k
Yn+1 _-;%-+.B;i—k
by taking reciprocal of both sides
14 _C
Ynt+1 = Ei__jégﬁii
Yn—k
hence v C
Yn+1 = Zn + E
set P = %, we get Eq.(4.19). The proof is complete [

The Eq.(4.19) was investigated in [13] and [9]. But in [9], the investigation is

restricted for P € [1, 00).

3 i ﬂxn
4.2.2 Dynamics of z,.1 = BriCr
Lemma 4.7. The change of variables x,, = Ciyn reduces Eq.(4.12) into the difference
equation
Y1 = P+ 2 =0,1,2,... (4.20)
Yn—k
where P = g and the initial conditions y_g,--- , yo are nonnegative real numbers.
Proof. Substitute z, = CL;n in Eq.(4.12). We get
62
s Cyn
BB B
Oyn+1 Cyn + Yn—r
cancel g from both sides, we get
B
1 _ v
BB g8
Yn+1 Cyn + Ynr
then by canceling 3, we get
1
1 w
~ B 1

yn+1 Cyn Yn—k
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by taking reciprocal of both sides

B, 1
Cun " Yo
Ui = 2 Ly K
Yn
thus
_B.
yn+1 - C yn_k
set P = g, we get the Eq.(4.20). This completes the proof. O
The Eq.(4.20) was studied in [2].
: _ BratyTa-
4.2.3 Dynamics of x, | = W

Lemma 4.8. The change of variables x, = gyn reduces The FEq.(4.13) into the

difference equation
Yn

Yn—k

Yn+1 = P+

,n=0,1,2,... (4.21)
where P = % and the initial conditions y_x,--- , Yo are nonnegative real numbers.
Proof. Substitute x,, = g in Eq.(4.13). We get

%ﬂyn + gvyn—k

“Yn+1 =
C goyn—k
hence
B - BYn + VYn—k
C n+1 Cynfk
then
C,yn+1 = Cmr
by eliminating g from both side, we get
Yn + %ynfk
Yn+1 = ——————
Yn—k
hence y ~
Yn+1 = = + =
i Yn—k ﬁ
set p = %, we get Eq.(4.21). The proof is complete. ]

The Eq.(4.20) was studied in [2].
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3 _ ﬁ ntYTn—
4.2.4 Dynamics of x,,1 = %ﬁk
Lemma 4.9. The change of variables x,, = Ly, reduces Eq.(4.14) to the difference

equation
Yn—k

Yn

Yn+1 = P+

n=012 . (4.22)

where P = g € (0,00) and the initial conditions y_g,---, Yo are nonnegalive real
numbers.

Proof. Substitute z,, = % in Eq.(4.14). We get

Y on = E8Yn + FVYn—k
S Yn+1 —
B £ Byn
hence
Do = BYn + VYn—k
B n+1 Byn
then ,
v o VEYn t Yni]
BT T By,
by eliminating % from both side, we get
gyn + Yn—k
Yn+1 = —————
Yn
hence 3
Yni1 = = + Yn—k
8 Yn
set P = %, we get Eq.(4.22). The proof is complete. ]

The Eq.(4.22) was investigated in [13] and [9]. But in [9], the investigation is

restricted for P € [1, 00).

4.2.5 Dynamics of 2,41 = 55—

The Eq.(4.15) is reduced by change of variables x,, = ‘;—f into

B C
Ynt1 = — +
Yn Yn—k

n=0,12,.. (4.23)
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where the initial conditions y_,-- -, yo are arbitrary nonnegative real numbers.
The only positive equilibrium point is ¥ = v/B + C. when k = 1, the Eq.(4.23)

was investigated in [11]. It was shown that every solution is bounded and persists, it

also shown that the equilibrium point 7 = /B + C is globally asymptotically stable.

In this monograph, we investigate the difference equation (4.23) when k € {2,3,...}.
Theorem 4.1. Every solution of Eq.(4.23) is bounded and persists.

Proof. Let the contrary. i.e. there exists a solution {y,, }>° _, which is neither bounded
from above nor from below. That is

lim sup y, = 0o and lim inf y, =0

n—oo n—oo

Then clearly, we can find indices i and j with

1<i<y
such that
Yi >y >y; forallne{—k,..,j—1}
Hence
B C B+C
Yi = + >
Yji-1  Yj—k-1 Yi
and
B C B+C
Yi = + <
Yi—1 Yi—k—1 Y
that is
B+C’<yiyj<B+C
which is impossible. L

To investigate the stability of Eq.(4.23), let f(x,y) = % + %

Theorem 4.2. The equilibrium point y = B + C is unstable when k is even.
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Proof. The linearized equation of Eq.(4.23) about the equilibrium point gy = B + C'
is

B C
Znyl = — 2y — ————
T B+C™ B+C
and its characteristic equation is

Zn—k, n=0,1,2, ..

B
P ¢

)\kJrl —
t5rc” TBrC

0

Then the proof follows immediately from theorem 2.3. ]

Before we examine the existence of two cycles of eq.(4.23), it is worthwhile to

mention that when C' =1 and k = 2, it was shown by R.Devault and G. Ladas and

S.W. Schultz that every positive solution of the difference equation ¥, 1 = yﬁ + 3 1_2

converges to a period two solution.

Theorem 4.3. Let {y,}>2 . be a non-negative solution of Eq.(4.23). Then the fol-
lowing statements are true:

o [fk is odd, then Eq.(4.23) does not have prime period-two solutions.

o [fk is even, then Eq.(4.23) has prime period-two solution

"'7¢7w7 (ﬁ?w?

And the values ¢ and v of all prime period-two solutions are given by:
{¢,4 €(0,00): ¢tp =B+ C}

Proof. Let
VR J R JR

be a period two solution of the Eq.(4.23) where ¢ and ¢ are positive and distinctive,
then

e If k is odd, then we have

KA
I
+

(4.24)

_|_
QB Q

<
I
ARSSSTRS

(4.25)
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from Eq.(4.24), we get

Bo + Cvy
b=—" 4.26
oy (4.26)
from Eq.(4.25), we get
By +Co
p="""7" 4.27
oy (4.27)
from Eq.(4.26) and Eq.(4.27), we get
B C B C
6+Cy _ B+ 0 .28)
¢ (8
then
Béw + O = Bipg+ (4.29)
hence
Cy* = Bg¢®
thus
¢ =1
which is contradiction.
e If k is even, then
B B C
="+ = - - L =
T + T and 1) D + >
which implies that
oY =B+C
and the period two solution must be of the form
B+C  B+C
ad) ¢7 ’ ¢a y e
¢ ¢
which is completes the proof.
m

Theorem 4.4. Let {y,}>2 . be a solution of Eq.(4.23). Then the following state-
ments are true:

1. Suppose B + C > 1 and assume that for some N > 0, yn_k, ..., Yn_1, YN €
[1,B+C]. Theny, € [1,B+C| for alln > N.
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2. Suppose B + C < 1 and assume that for some N > 0, yn_g,---, YN-1, YN €

B+ C,1]. Then vy, € [B+ C,1] for alln > N.

3. Suppose B > C and assume that for some N > 0, yn_g,-.., YN_1,

[C,2 +1]. Theny, €[C,Z+1] foralln> N.

4. Suppose B < C' and assume that for some N > 0, yn_k,-.., YN_1,

(B, +1]. Theny, € [B,$ +1] for alln > N.
Proof. The proof of this theorem is based on monotonic character.

1. Assume that for some N > 0, yn_x, ..., ynv—1, yn € [1, B+ C]. Then

C
YNyl = — + <B+C
YN YN-k
and
_B,C _ B C _,
yN+l_yN nyk_B_'_C B"—C_

2. Assume that for some N > 0, yn_k, ..., yn—1, yn € [B + C,1]. Then
B C B C

= + < + =1
Yn Yn YNk - B + C B + C
and B o
YNyl = — + >B+C
YN  YN-k

3. Assume that for some N >0, yn_, ..., Yyn—1, yn € [C, g + 1]. Then
B C B C B

=—+ <—+—-=—+1
ey Tne S C 0 C
and
+ ¢ > B + ¢ C
yN 1:— = _—
! YN YN-k % B—JCFC

4. Assume that for some N >0, yn—k, ..., Yynv—1, yn € [B, < + 1]. Then

and

Yn €

YN €
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The proof is complete. O

Theorem 4.5. Let k is odd, Theny = /B + C' 1s globally attractor equilibrium point
of Eq.(4.23).

Proof. For u,v € (0,00), set
B C
f(U,7 U) =—+ —
u v
Then f : (0,00) x (0,00) — (0,00) is continuous function and is nonincreasing in

both its argument. Let (m, M) € (0,00) is a solution of the system
m = f(M, M) and M = f(m,m)

then m = M when k is odd. By using Theorem 2.5, ¥ = B + C is globally
asymptotically stable equilibrium point of Eq.(4.23). This completes the proof. [

Finally, we introduce the analysis od semicycles of Eq.(4.23) in the following the-

orern.

Theorem 4.6. Every oscillatory solution of Eq.(4.23) has semicycle of length at most
k

Proof. The proof follows from theorem 2.9 by observing that the function f(u,v) =
% + % is decreasing in both its arguments. The proof is complete. O]

O‘Jf_’yxnfk

4.2.6 Dynamics of z,,1 = =

When g = C =0 we get the Eq.(4.16)

Lemma 4.10. The change of variables x,, = %y, reduces Eq.(4.16) into the difference

equation

P+y,_
Yn+1 = ok (4.30)

n

where P = ‘i—? € (0,00) and the initial conditions y_g,--- , yo are arbitrary nonneg-
ative real numbers.

Proof. Substitute z,, = Fy, in Eq.(4.16) to get

Y o+ V%yn—k
Eyn-i-l = T
BYn
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then .
o VYn—k
BYnt1 =~ ——
B By,
thus 5
y ’7[0;_2 + yn—k]
SYnt1 = —
B By,
by canceling & from both sides, we get
?{Y_g + Yn—k
Y1 = ——
Yn
set P = O;—f, we get Eq.(4.30) O
The only positive equilibrium point is 7 = Z3+22 ‘21+4p. The linearized equation about
equilibrium point 7 is
2

Zn+1 + 2n — =0

A
1+ T+4p "

and its characteristic equation is:

2
D B —
1+v1+4p
Theorem 4.7. The equilibrium point j = 3122 V;“” 15 unstable.

The proof follow immediately by Theorem 2.3.
Theorem 4.8. The Eq.(4.50) has no positive prime period two solution.

Proof. Let there exist a solution of prime period two

"'7¢7w7 ¢7w7

where ¢ and v are positive and distinct.
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o If k is odd. Then we have

pt+o
p=—= 4.31
" (4.31)
and
p— Py (4.32)
¢
from Eq.(4.31), we get
p=p+o (4.33)
and from Eq.(4.32), we get
oY =p+7 (4.34)
from Eq.(4.33)and Eq.(4.34), we get
pro=p+y
Hence
V=09
which is a contradiction.
e If k is even. Then we have Ly
p
¢ =—= 4.35
7 (4.35)
and
P = M (4.36)
¢
from Eq.(4.35), we get
Y =p+1 (4.37)
and from Eq.(4.36), we get
p=p+o¢ (4.38)
from Eq.(4.46)and Eq.(4.47), we get
p+o=p+v
Hence
V=20
which is a contradiction.
This completes the proof. Il

Theorem 4.9. The equilibrium point y = Lrvivip V21+4p of Eq.(4.30) is global attractor.
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Proof. For u,v € (0,00), set f(u,v) = E2 Then f : (0,00) x (0,00) — (0,00) is
continuous function and is nonincreasing in u and nondecreasing in v. Let (m, M) €
(0,00) is a solution of the system

m = f(M,m) and M = f(m, M)

Then
p+m=p+M
Hence
m=M
Then by using theorem 2.7, § = 11+ V21+4p is a global attractor equilibrium point of

Eq.(4.30). This completes the proof. O
Theorem 4.10. Every oscillatory solution of Eq.(4.30) has semisycle of length k.

Proof. The proof follows immediately from theorem 2.8 by observing that the function
flz,y) = p% is decreasing in x and increasing in y. The proof is complete. O]

4.2.7 Dynamics of z,,1 = Oé;ff:

Lemma 4.11. The change of variables x, = gyn reduces the Fq.(4.17) to the differ-
ence equation

P4y,
Yn+1 = (439)
Yn—k
where P = %—%‘ € (0,00) and the initial conditions y_g, -+, yo are arbitrary nonneg-

ative real numbers.

Proof. Substitute x,, = gyn in Eq.(4.17) to get

3 yry = & 3Ly,

“Ynt1 = —75

C C%ynfk
then o

g F 0

Cyn+1 = Cmr
thus .

B Bl A+l

C?/nﬂ = Comr

by canceling g from both sides, we get

B+

Yn+1 =
Yn—k
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set P = %—Q, we get Eq.(4.39)
[

. The linearized equation about

The only positive equilibrium point is §y = _1+\/214er

equilibrium point 7 is

2
Y VIt dp

Zn+ 2Znk =0
and its characteristic equation is:

U R S U )

1+v1+4+4p

Remark 4.1. For k = 1, the Eq.(4.17) is well known in literature of Rational Difference
Equations as lyness’ Equation [11]. For this equation it is known that every solution
is bounded and persists and no nontrivial solution had a limit.

1++/1+4p

5 15 unstable.

Theorem 4.11. The equilibrium point y =

The proof follow immediately by Theorem 2.3.
Theorem 4.12. The Eq.(4.39) has no positive prime period two solution.

Proof. Let there exist a solution of prime period two

s Oy, DL,

where ¢ and v are positive and distinct.

e If k is odd. Then we have

P+
_gr v 4.4
¢ 5 (4.40)
and Iy
— pT¢o 4.4
(0 m (4.41)

from Eq.(4.40), we get
6 =p+ o (4.42)
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and from Eq.(4.41), we get

VP=p+o (4.43)
from Eq.(4.42) and Eq.(4.43), we get
o+ =-1
Which is a contradiction.
e If k is even. Then we have vy
p
p=LT%¥ 4.4
" (4.44)
and
p=Pre (4.45)
¢
from Eq.(4.44), we get
Y =p+1 (4.46)
and from Eq.(4.45), we get
pp=p+¢ (4.47)
from Eq.(4.46) and Eq.(4.47), we get
p+o=p+v
Hence
=20
which is a contradiction.
This completes the proof. O

Theorem 4.13. The equilibrium point y = Lrvivap V21+4p of Eq.(4.39) is global attractor
when k is even.

Proof. For u,v € (0,00), set f(u,v) = . Then f : (0,00) x (0,00) — (0,00) is
continuous function and is nondecreasing in u and nonincreasing in v. Let (m, M) €
(0,00) is a solution of the system

m = f(m, M) and M = f(M,m)
Then
ptm=p+M

Hence
m=M

Then by using theorem 2.6, § = 2 V21+4p is a global attractor equilibrium point of
Eq.(4.39). This completes the proof. ]
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Theorem 4.14. Every oscillatory solution of Eq.(4.39) has semisycle of length at
least k + 1.

Proof. The proof follows immediately from theorem 2.10 by observing that the func-
tion f(z,y) = % is increasing in x and decreasing in y. The proof is complete. [

The Eq.(4.18) is a Riccati equation and can be solved explicitly to determine the
character of its solution [6]. And the equilibrium point is globally asymptotically

stable.

4.3 Three parameters are zero

In this section we examine the character of solution of Eq. (3.1) where three param-

eters in Eq.(3.1) are zero. There are six such equations, namely:

Tpr1 = gx;_in —0,1,2... (4.48)
Tl = Vg’;’“,n ~0,1,2.. (4.49)
Tl = Oﬁ%"kn —0,1,2... (4.50)
Tpr1 = %,n —0,1,2... (4.51)
Tpr1 = C%kn —0,1,2... (4.52)
Tl = — n=0,1,2... (4.53)

Bz,
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where the parameters «, (3,7, B, C' are nonnegative real numbers and the initial
conditions x_,r_gi1, -+, To are arbitrary nonnegative real numbers.

The Eq.(4.48) is trivial, moreover, z,, = & for all n > 0.

The Eq.(4.49), which is the change of variables z,, = £e¥" reduces it to the linear

difference equation

Yn+1 + Yn — Yn—k = 07 n = 07 ]-7 2) (454)

To prove this transformation, substitute z,, = %e¥" in Eq.(4.49), we get

l Yn—k
leyn+1 — ,yBe
B B %eyn
thus
Yn—k
eyn+1 — €
eyn
hence
eyn+1 — eyn—k_yn
then
Yn+1 = Yn—k — Yn
hence

Ynt1 + Yn — Yn—r =0

Note that when k = 1, we have the following linear difference equation

Yntl T Yn — Yn—1 = 0, n = O, ].,2,
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and its general solution is

—1+5 —1-+5

L) (— )

Yn = cl(

where c; and ¢y are arbitrary.
Lemma 4.12. The equilibrium point of Eq.(4.54) is unstable when k > 2.

Proof. The proof is consequently from Theorem 2.4. O

The Eq.(4.50) is reduced by change of variables x, = gyn into the difference

equation

Yn
Yn—k

Yns1 = (4.55)

when k = 1, every solution of Eq(4.55) is periodic with period 6, and its solution is:

Zo 1 1 Tr_1

*,T-1, 0, ) ) ) )
r_1 -1 g Xo

when k > 1, the change of variable z,, = %e¥ reduces Eq.(4.50) into the linear

difference equation

Yn+1 _yn+yn—k - Oan: 071727-" (456)
Lemma 4.13. The equilibrium point of Eq.(4.56) is unstable when k > 2.

Proof. The proof is consequently from Theorem 2.4. O

The solution of Eq.(4.51) is trivial. The Eq.(4.52) has nontrivial solution, and
every solution is periodic with period 2(k+1). Finally, every solution of Eq.(4.53) is

periodic with period two.



Chapter 5

Computational Approach

5.1 Numerical Examples

In this section, we illustrate the results of previous sections and to support our the-
oretical discussions. We consider different numerical examples in this section. These
examples represent different types of qualitative behavior of solutions to nonlinear
difference equations.

In order to achieve the full benefits of computers, and to observe this numerical
results clearly, we present both graphs and tables of solutions that were carried out
using MATLAB. Different values of parameters are chosen, and It should be noted

that y_g, y_g+1, ---, Yo are also different initial points.

Example 5.1. Consider the third order difference equation when k = 2 in Eq.(3.10)

14+ yn + 2yn—2
Yn + 2Yn—2

with wnitial conditions y_o = 1,y_1 = 2,950 = 3

Ynt+1 = ,n=0,1,2 ..
In previous chapter, we have proved in theorem 3.2 that ¥ is asymptotically stable.
look at the table 5.1 and figure 5.1. Observe that 7 = 1.2638 is asymptotically stable.
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y(n)

n

y(n)

n

y(n)

n

y(n)

O 1 O UL i WS

1

2

3
1.2000
1.1923
1.1390
1.2826
1.2727
1.2816
1.2600
1.2628
1.2614
1.2645
1.2633
1.2641
1.2636
1.2638
1.2637
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20

1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638

51
52
93
o4
95
o6
57
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
4
5

1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638
1.2638

Table 5.1: Solution of DE y,, .1 =

1+yn +2yn72

Ynt2yn—2
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plot of y(n+1)=p+y(n)+I*y(n—k))/(y(n)+g*y(n—1)

—— k=2
p=1, g=2, I=2

I I I I I i
20 40 60 80 100 120
n—iteration

1+yn+2yn—2

Figure 5.1: Plot of y,,11 = T

Example 5.2. Consider the fourth order difference equation when k = 3 in Eq.(3.10)and
parameters:;p =2, 1 =3, and q = 4
2 + Yn + 3yn—3

Yn + 4yn73

Yn+1 = ,n=0,1,2,..

with initial conditions y_3 =1,y o =12,y 1 =1.1,y0=1.15

Observe that p+1 > g and y_3,y_2,y-1,y0 € [1,1.25]. then by theorem 3.3 y,, €
[1,1.25] for all n =0, 1,2, .... this case § = 1.1483For Fortunately, the computational

result emphasis the theoretical result. Look at the table 5.2 and figure 5.2.

Example 5.3. Consider the third order difference equation when k = 2 in Eq.(4.23)with
parameters B =2 and C' =3
2 3

Ynt1 = — +
Yn Yn—2

and initial conditions y_o = 1,y_1 = 2,yp = 3.

Example 5.4. In section 3.6, we investigated the existence of two cycles, and theorem
3.4 investigated the conditions of existence of two cycles. Consider the fourth order
difference equation when k = 3 in Eq. (3.3) with parameters p=3, |=7, and q=0.4
3+ Yn + 7yn—3

Yn + O'4yn—3

Yn+1 =



n| ym |n| ym |n ym| n | yn

1 1 26 | 1.1484 | 51 76

2| 1.2000 | 27 | 1.1483 | 52 7

3| 1.1000 | 28 | 1.1483 | 53 78

41 1.1500 | 29 | 1.1484 | 54 79

51 1.1942 | 30 | 1.1483 | 55 80

6] 1.1335 | 31 | 1.1483 | 56 81

711.1626 | 32 | 1.1483 | 57 82

8| 1.1475 | 33 | 1.1483 | 58 83

9] 1.1360 | 34 | 1.1483 | 59 84

10 | 1.1528 | 35 | 1.1483 | 60 85

11 ] 1.1443 | 36 | 1.1483 | 61 86

12 1 1.1487 | 37 | 1.1483 | 62 87

13 | 1.1518 | 38 | 1.1483 | 63 88

14 | 1.1470 | 39 | 1.1483 | 64 89

15| 1.1495 | 40 | 1.1483 | 65 90

16 | 1.1482 | 41 66 91

17 1 1.1474 | 42 67 92

18 | 1.1487 | 43 68 93

19 | 1.1480 | 44 69 94

20 | 1.1480 | 45 70 95

21 | 1.1486 | 46 71 96 | 1.1483

22 | 1.1482 | 47 72 97 | 1.1483

23 | 1.1484 | 48 73 98 | 1.1483

24 | 1.1483 | 49 74 99 | 1.1483

25 | 1.1483 | 50 75 100 | 1.1483
2+yn+3yn—3

Table 5.2: Solution of DE y,, .1 =

Yn+4yn—3
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=Bly(n)+Cly(n-k)

solution of y(n+1)

plot of y(n+1)=p+y(n)+My(n—K))/(y(n)+q*y(n—I)

1.2

1.18-

1.16

1.14 -

112+

g 1.1 H

1.08 H

1.06 H

1.04H

1.02H

lD 2‘0 4‘0 6‘0 8‘0 1[‘)0 1£0
n—iteration
. 24-Yn+3yn—3
Figure 5.2: Plot of e
g yn+1 Yn+4Yn—3
plot of y(n+1)=B/y(n)+C/y(n—k)
4~
—— k=2
351
3 =
25
2 —
1.5
1 1 1 1 1 1 j
0 20 40 60 80 100

n—iteration

3
Yn—2

Figure 5.3: Plot of y,,1 = y% +

120
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n

y(n)

n

y(n)

n

y(n)

0~ O UL W N =B
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1
2
4
3.5
2.0714
1.7155
2.0230
2.4369
2.5695
2.2613
2.1155
2.1130
2.2732
2.2979
2.2901
2.1930
2.2175
2.2119
2.2722
2.2331
2.2519
2.2084
2.2490
2.2215
2.2587

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20

2.2194
2.2516
2.2164
2.2541
2.2196
2.2546
2.2180
2.2533
2.2182
2.2542
2.2186
2.2539
2.2182
2.2538
2.2184
2.2540
2.2184
2.2539
2.2183
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184

51
52
53
o4
95
o6
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
4
5

2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184
2.2539
2.2184

Table 5.3: Solution of y,,1 = y% 4+ 3

Yn—2
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and initial conditions y_3 =2, y_o =5, y_1 =8, and yo = 9.Look at the table 5.4 and
figure 5.4 and observe that the solution converges to two-cycle ={2.3765,12.6235}.

) [n| ym |n| ym) | n | ymn

26 | 11.0089 | 51 | 2.4340 | 276 | 12.6235
27 | 2.9170 | 52 | 12.4743 | 277 | 2.3765
28 | 11.2464 | 53 | 2.4234 | 278 | 12.6235
29 | 2.8508 | 54 | 12.5017 | 279 | 2.3765
2.6531 | 30 | 11.4294 | 55 | 2.4148 | 280 | 12.6235
8.7368 | 31 | 2.7666 | 56 | 12.5241 | 281 | 2.3765
5.6746 | 32 | 11.6297 | 57 | 2.4077 | 282 | 12.6235
7.7281 | 33| 2.7083 | 58 | 12.5425 | 283 | 2.3765
3.3335 | 34 | 11.7737 | 59 | 2.4019 | 284 | 12.6235
10 | 9.8841 | 35| 2.6505 | 60 | 12.5575 | 285 | 2.3765
11| 4.3283 | 36 | 11.9219 | 61 | 2.3972 | 286 | 12.6235
12 | 8.2788 | 37| 2.6051 | 62 | 12.5698 | 287 | 2.3765
13| 3.6010 | 38 | 12.0336 | 63 | 2.3933 | 288 | 12.6235
14 | 10.0322 | 39 | 2.5651 | 64 | 12.5798 | 289 | 2.3765
15| 3.6835 | 40 | 12.1379 | 65 | 2.3902 | 290 | 12.6235
16 | 9.2402 | 41 | 2.5322 | 66 | 12.5879 | 291 | 2.3765
17 | 3.5061 |42 | 12.2206 | 67 | 2.3876 | 292 | 12.6235
18 | 10.2050 | 43 | 2.5045 | 68 | 12.5946 | 293 | 2.3765
19 | 3.3386 | 44 | 12.2926 | 69 | 2.3856 | 294 | 12.6235
20 | 10.0957 | 45 | 2.4815 | 70 | 12.6000 | 295 | 2.3765
21 | 3.2734 |46 | 12.3512 | 71 | 2.3839 | 296 | 12.6235
22 | 10.5648 | 47 | 2.4626 | 72 | 12.6044 | 297 | 2.3765
23 | 3.1037 | 48 | 12.4005 | 73 | 2.3825 | 298 | 12.6235
24 | 10.7496 | 49 | 2.4469 | 74 | 12.6079 | 299 | 2.3765
25 | 3.0404 | 50 | 12.4409 | 75 | 2.3814 | 300 | 12.6235

=
@OOO‘![\D:

© 00~ O UL W B

Table 5.4: Solution of y,,1 = %

Example 5.5. Consider the third order difference equation when k = 2 in Eq.(4.52)

Ynt1 = ,n=0,1,2,..

n—2

where p = &
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plot of y(n+1)=(p+y(n)+I*y(n—k))/(y(n)+q*y(n—I)

Y(n)

|
IO
| H

I
|

I I I I I I ]
o 50 100 150 200 250 300 350
n-iteration

Figure 5.4: Plot of y,,+1 = %

In Sec.(4.3), We proved that there is no trivial solution, and every nontrivial

solution is periodic with prime period2(k 4 1). In this case the solution should be

with period 6.

with period 6.

Look at the table 5.5 and Figure 5.5, we note that the solution periodic

That is, the 6-cycle={3,2,4,1.6667,2.5,1.25}.

plot of x(n+1)=p/(x(n—k)

4-
—— k=2
Period =6

35+
= 3
5
=
s
M
o
£ 25
>
kS]
=
S
3
8 2

1.5

1 1 1 1 1 1 |
[o] 20 40 60 80 100 120

n-iteration

Figure 5.5: Plot of y,41 =

Yn—2



N| Xn) | N| X(n) | N| X(n) | N | X(n)

1 3 26 2 o1 4 76 | 1.6667

2 2 27 4 52 | 1.6667 | 77 2.5

3 4 28 | 1.6667 | 53 | 2.5 78 | 1.25

411.6667 | 29| 25 |54 125 | 79 3

51 25 [30] 1.25 |55 3 80 2

6 125 |31 3 o6 2 81 4

7 3 32 2 o7 4 82 | 1.6667

8 2 33 4 58 | 1.6667 | 83 2.5

9 4 34 1 1.6667 | 59 | 2.5 84 | 1.25
10 | 1.6667 | 35| 2.5 |[60| 1.25 | 85 3
11 2.5 36 | 1.25 |61 3 86 2
12| 1.25 |37 3 62 2 87 4
13 3 38 2 63 4 88 | 1.6667
14 2 39 4 64 | 1.6667 | 89 2.5
15 4 40 | 1.6667 | 65 | 2.5 90 | 1.25
16 | 1.6667 | 41| 2.5 |66 | 1.25 | 91 3
171 25 421 1.25 | 67 3 92 2
18| 1.25 |43 3 68 2 93 4
19 3 4 2 69 4 94 | 1.6667
20 2 45 4 70 | 1.6667 | 95 2.5
21 4 46 | 1.6667 | 71 2.5 96 1.25
22| 1.6667 | 47 | 2.5 721 1.25 97 3
23] 25 |48] 125 |73 3 98 2
241 1.25 |49 3 4 2 99 4
25 3 20 2 5 4 100 | 1.6667

Table 5.5: Solution of DE x,, .1 =

Tn—2
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5.2 Phase Space Diagram

Phase space (also known as state space) is the set of all possible states of a dynamical
system. Since it is usually impossible to derive an explicit formula for the solution of a
nonlinear equation except for a few types which have been introduce in section (1.5).
The phase space provides an extremely useful way for visualizing and understanding
qualitative features of solutions. In this section we introduce phase state diagrams
of some difference equations and compare these graphs with time series graphs for
the same of difference equations. The following example we present a convergence

solution.
Example 5.6. Consider the fourth order difference equation when k = 3.

2 + Un + 4yn73
Yn + 4yn—3

Yn+1 =

Figure (5.6) illustrates phase state diagram for four sets of initial values.

The next example illustrates a divergence sequence.
Example 5.7. Consider the fourth order difference equation when k = 3.

3 + Yn + 7yn—3
Yn + O-4yn—3

Yn+1 =

Figure (5.7) illustrate phase state diagram while figure (5.8) illustrates time series

solution.



y(n+1)

y(n+1)

plot of y(n+1)=(p+y(n)+I*y(n—K))/(y(n)+q*y(n—

12+

10+

]

0 I I I I

[3
y(n)

Figure 5.6: Phase state graph of y,, 11

_ 24yntdyn-3

Ynt+4yn—3

plot of y(n+1)=(p+y(n)+y(n-K))/(y(n)+q*y(n-I)
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Figure 5.7: Phase state graph of y,, 11
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plot of y(n+1)=p+y(n)+*y(n-k)/(y(n)+a*y(n-1)

12

10

Y(n)
o]

> i i i i i i
850 860 870 880 890 900 910
n—iteration

3+YntTyn—3

Figure 5.8: Time series solution y,.1 = Tt A,

5.3 Matlab Program

The mfile function investigate the the nonlinear rational difference equation: 3.3

+ x, + L,
i1 = © k=012
$n+q9€n71

where the parameters p, ¢ and initial conditions x_j, x_41, ..., o are nonnegative real
numbers, k = {1,2,3,...}

There have been many good programs on Dynamical systems and Difference equa-
tions that concentrate on one or two aspects, but our program is really fantastic for

these reasons :

1. Our program is user friendly.

2. The program calculate the equilibrium point.
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3. You need not to write parameters when you invoke the program.

4. Tt give a readable out put, i.e. the out put appear in a table.

5. It produce an excellent plots that represent a solution of Difference equation.

6. It deals with an arbitrary k. I believe it is one of the most advantages of our
program, because every time the user run the program can enter the value of k

which make the program more reliable.

7. Finally, this program can be easily modified for a new type of Difference equa-
tions.

For more information, see Appendix.

Remark 5.1. The mfile in A.1 that has been reported is designed to solve the rational
difference equation

P+ Yn+ lyny
Ynt1l = ,n=20,1,..
Yn + qYn—k
where the parameters p, ¢, and are nonnegative real numbers and the initial conditions
Yok Y—kils** ,Yo are arbitrary nonnegative real numbers.

Hence, if we want solve an equation that rises from special cases in ch.4, a slightly
modification is needed. Furthermore, we need to modify the difference equation and
the inserting parameters code.



Appendix A

Appendix

A.1 Rational Difference Equation Program

% A File to the rational difference equations of order k
% call as: ratdiff
%You have to enter parameters: p, 1, q
% and initial values: y
%This program solves the equation :
% Xn+1 = (p + Xn + *Xn-k )/( Xn 4+ q*Xn-k)
% numerically producing a table and graph of the solution
% Tt has been designed to deal with arbitrary k
function ratdiff;
k=input(’enter the value of the positive integer k = ’);
p=input(’enter the value of the positive parameter p = ");

I=input(’enter the value of the positive parameter L = ’);
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gq=input(’enter the value of the positive parameter q = );
solution =ddifkk(k,p,1,q);

disp(’ ")

disp(” Table ”)

disp(* )

disp("The solution x(n) is given in the following table : )

d=[solution(1:25,:),solution(26:50,:),solution(51:75,:),solution(276:300,:)];

disp(’ -)
disp(’ n x(n) n x(n) n x(n) n x(n)’)
disp(’ -)

disp(d)

fixedpoint=(((1+1)+ sqrt((1+1)A24+4*p*(14q))) /(2¥(1+q)));
fprintf(*fixedpoint =%2.4f. n’ fixedpoint);

function plotandeval=ddifkk(k,p,l,q);

% Give an initial values for y(-k)... y(0)

for i=1:k+1;

x(i)=input(’Enter the value of the positive initial condition x =’);
end

for n=k-+1:300

x(n+1)=(p+x(n)+1*x(n-k))/(x(n)+q*x(n-k));
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end

t=1:301;

plotandeval=[t;x]’;

grid on

hold on

t=1:301;

plot(t,x,’b.-");

xlabel('n-iteration’);

ylabel("Y (n)’);

title('plot of y(n+1)=(p+y(n)+*y(n-k))/(y(n)+q*y(n-1)’);
pl=strcat(’k= ",num2str(k));
p2=strcat(’p=",;num2str(p),’, q= " num2str(q),’, 1= ";num2str(1));

legend(p1,p2);
A.2 Phase Space Diagram Program

function ratdiffphas;
k=input(’enter the value of the positive integer k = ");
p=input(’enter the value of the positive parameter p = ’);
l=input(’enter the value of the positive parameter L = ’);
gq=input(’enter the value of the positive parameter q = );

xn=zeros(1,300);
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xnn=zeros(1,300);
fixedpoint=(((1+1)+sqrt((1+1)A2+4*p*(1+q)))/(2*(1+q)));
fprintf(’fixedpoint =

for i=1:k+1;

x(i)=input(’enter the value of the positive initial condition x =’);
end for j=1:k;

) =x(i+1);

end

for n=k+1:299

y(n)=(p+x(n)+1*x(n-k)) /(x(n)+q*x(n-k));

x(n+1)=y(n);

end

¥(300)=(p-x(300)+1¥x(300-k)) / (x(300) +q*x(300-k) );

grid on

hold on

plot(x,y,’b.-")

xlabel(’y(n)’)

ylabel("y(n+1)’)

title("plot of y(n+1)=(p+y(n)+*y(n-k))/(y(n)+q*y(n-1)’);

pl=strcat(’k=’num2str(k));
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p2=strcat(’p= ’,;num2str(p),’, q= *num2str(q),’, 1= ";num2str(l));

legend(p1,p2);
A.3 Cobweb Diagram Program

Cobweb Diagram
First Order Difference Equations A proc to generate a sequence of
iterates of the difference equation
> restart;with(plots):setoptions(thickness=2):
Define a function (procedure) that will generate the iterates of a function g
local i;
seq((g@@i)(p0), i=0..nmax)
end:
Define the data and the function h where x(n+1)=h(x(n))
> 1:= 3.95:
h = x -> r*x*(1-x);
> data:=[iterates(h,0.1,30)]:
> datapoint := [seq([n-1,data[n]],n=1..30)]:
Plot the time dependent behavior
> 11 := convert(r,string):
code := cat(‘Discrete Logistic - r =r1);

plot(datapoint,x=0..30,0..1,title=code);



A proc to generate a cobweb graph of an iteration - lastn even
> cobweb:= proc(g,t1,lastn)

local pp, ppl, i, plotl, plot2;

ppl:= [seq((g@QQ(trunc((i+2)/4)))(t1) ,i=1..lastn)];
pp:= [seq([pp1[2*i-1],pp1[2*i]],i=1..lastn/2)];
plot1l:= plot(pp,x=0..1):

plot2:= plot(x,g(x),x=0..1,color=black):
plots|display]|(plot1,plot2);

end:

Execute the cobweb procedure

> cobweb(h,0.2,30);

%End the program
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